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Errata 

 

Although the citation was present, the 2010 version of this manuscript contained a 

formatting error that omitted the proper quotation marks around Professor Pollock’s 

observation of the research process in chapter 2, p. 9. The 2012 version of the manuscript 

corrects this error. 

  

The correct citation to Figure 2.1 (p. 25) is Pollock 2005, 9. The 2010 version of this 

manuscript omitted the page number. The 2012 version of the manuscript corrects this 

error. 

 

The 2010 version of this manuscript did not note that the numeric summary described in 

chapter 3 (p. 32) was devised by Hartwig and Dearing (1979). The 2012 version of the 

manuscript corrects this error. 

 

References in the 2010 version of this manuscript omitted Pollock 2009. The 2012 

version of the manuscript corrects this error. 
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CHAPTER 1 
 

 

AN INTRODUCTION TO EXPLORATORY DATA ANALYSIS 
 

This book focuses on an approach and a set of methods for social scientists to use 

in the exploration of data. This approach or these methods are not related to any 

particular subject matter. However, the utility of the Exploratory Data Analysis (EDA) 

approach and the techniques presented here are widely useful for anyone who is 

approaching a set of data from the outset. The purpose of this is to provide a systematic 

scheme for looking at data and extracting the patterns that are contained in the data. To 

do that, we will outline a perspective or approach, a set of “steps,” and a set of methods 

that can accommodate a wide variety of data. This will be an outline of a remarkable way 

of looking at social science data. The techniques are not new and they may seem 

rudimentary or basic, but they provide a unique set of techniques that precede much of 

the work that social scientists typically undertake. 

Social science data are generally messy. The data are virtually never “normal.” As 

a result, using traditional and rigorous statistical methods for assessing those data are not 

usually the best way to begin the analysis of data for a research project. This book is not a 

statistical treatment of methods for confirming or measuring relationships or testing 

hypotheses. Instead, this presentation should be considered a prequel that precedes any 

confirmatory statistical techniques one might wish to use on data. This examination 

begins with a philosophy of skepticism about data. The EDA approach assumes that 

understanding the data requires more than a cursory or superficial glance or mere 

collection of some quantitative data. It requires careful, systematic, and somewhat unique 

(uncommon) techniques.  

 

The Philosophy and Process of Exploratory Data Analysis 

 

Any treatment of Exploratory Data Analysis must begin with a clear statement 

about the philosophical approach to data. This might seem strange, but a questioning and 

open-mind is essential to using this kind of approach to the examination of data. Much 

research in social science fields is theory driven, with elaborate or strongly held 
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expectations about the relationship(s) under examination. Such an approach is designed 

to confirm or reject hypotheses about the relationship(s) under examination. This general 

approach to confirmatory research is well-developed in a great many social science fields. 

It has produced any number of confirmed or rejected hypotheses about relationships. 

The use of exploratory techniques is intended to disclose patterns in sets of data. 

The purpose of these techniques is to uncover the shape and nature of the data you are 

examining. This perspective begins with “seeing” the data very closely or in detail, and 

examining it in broad or general terms as well. This approach involves no preconceived 

notions about any of the data, no matter how obvious the data seem to be on the surface. 

EDA expects one to find patterns in the data but that approach means, as John Tukey 

(1977: 1) indicated, engaging in “detective work.” That is, for a comprehensive 

uncovering of patterns the focus should be on numeric, counted, or graphical detective 

work. (Tukey’s book should be required reading for everyone interested in learning 

Exploratory Data Analysis techniques.) 

The perspective of exploratory data analysis is described in a simple formula that 

Tukey (1977: 208) outlined: 

Data = Smooth + Rough 

 

This translates into the basic point that data 

should be considered in two parts. The first 

portion is called the “smooth” and that refers to 

the pattern(s) that can be extracted from the 

raw data using various techniques. EDA 

techniques focus on extracting the “smooth” 

from any set of data. The smooth, whatever it is, 

comes from the data, and is not derived from 

our expectations or our guesses (hypotheses) about the data. That means the first step in 

the EDA process is to extract the smooth from data. A single variable may have more 

than one pattern or smooth. Extracting the smooth from the raw data may require more 

than one pass through it and there may be more than a single pattern that the data contain. 

That is important to consider because it leads to a very basic point about EDA – the 

A Smooth involves the relationship 

between two or more variables. The 

discussion about EDA techniques, 

however, begins with treatment or the 

examination of a single variable – a 

univariate analysis. The discussion in 

the next few chapters (before Chapter 

5) will focus on the analysis of a single 

variable. The Smooth and Rough 

concept will become quite evident in 

the later chapters of this book. 
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objective of EDA is to uncover the smooth in data. Furthermore, always expect to find 

more in the data than first appears to be the case. Let the data speak for itself. Then, look 

again, at the rough to determine if there is a secondary pattern or smooth in the residuals. 

The second portion of the formula, the Rough is the remaining residuals that 

contain no pattern at all. Residuals are what is left after all the patterns have been 

extracted from a data set. However, it is very important to look closely at the Rough, 

because that set of values may well contain additional patterns that need to be examined. 

(That means one should always analyze the residuals that come from any analytic 

technique. There may be patterns in the residuals.) The techniques demonstrated later in 

this book should allow for the extraction of the smooth in data and any subsequent 

smooth found in residuals. That should leave the residuals with no pattern at all. 

EDA begins by examining single variables. That is not the usual treatment that 

arises in connection with social science data. Multi-variate analysis often involves 

examining five, ten or more variables simultaneously. Here, we will devote a good deal 

of initial attention (Chapters 1 – 4) to exploring the shape of single variables in order to 

appreciate the nature of a variable and extracting as much information about the variable 

as is possible. That is the essential first step in EDA. Get as much information as is 

possible from each variable. 

The core elements of EDA begin with a skeptical and blank sense of what the data 

may show. Even when you have some idea of what you might expect, you should look at 

the data carefully for pre-conceived notions may not be confirmed by the data. Always go 

through the data set, whether it involves a single variable or several variables, repeated 

times, until you are sure there in nothing more (no other smooths) to be found in the data. 

This requires very careful work and it requires attention to detail. The analyst needs to 

note even minor differences in data patterns. The result of this is a very sound and 

perhaps revealing understanding of the data that are being examined. 

Much of this EDA approach is descriptive. This involves extracting patterns and 

the features of the data, rather than a summary or “what they add up to.” Much of the 

EDA approach involves visual displays of the data that permit observers to understand 

the data better than other, statistical methods that indicate spread, distribution, and 

location in the data. These methods should be resistant to extremes or peculiar pieces of 
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the data. EDA methods should clearly indicate those outliers, but not be sensitive or 

pulled by those data points, always pay attention to outliers. 

 

Displaying Data 

 

One particular feature of this process should be emphasized at the outset. There is 

a core need to graph and display the data you are considering. A statement about a picture 

being worth a thousand words might seem trite, but there is no substitute for “seeing” the 

variable or the data. The graphical presentation of data is very important for both the 

analysis of the variables and for the presentation of the findings that emerge from the data. 

As a result, a good deal exploratory data analysis involves graphing and plotting data, 

both single variables and multiple-variable data sets. Tukey (1977: 126-31) presents a 

sophisticated and understandable discussion about (1) the selection of graph paper, (2) 

the decisions one should make regarding both the graphing (analysis) of the data, and (3) 

the need to display the graphs on tracing paper! Tukey’s treatment indicates a now-dated 

perspective on the selection of graph paper and how to plot variables. That is because 

graphical software has proliferated over the years. However, the point he makes about 

“seeing” the variables and the data is still crucial (essential) because all software does not 

do an equally good job of plotting variables. Understanding how to graph data in order to 

analyze it and to present it clearly is still crucial to (1) understanding data and (2) EDA 

techniques. The discussion in Tukey and other sources (e.g., Cleveland, 1994; Robbins: 

2005) indicates just how important it is to display raw data and transformed data carefully 

and accurately. More will be said about plots throughout this book, since the 

understanding of data and relationships often depends on the picture of the data. 

EDA is focused on visual presentations rather than just numeric treatments. That 

is because “seeing” the patterns in the data is more likely to generate ideas or interest in 

exploration than having a numeric summary or distribution that is divorced from the data. 

As Hartwig & Dearing (1979: 15) indicate, visual displays of data emphasize the shape of 

the data and that is at least as important as the location and the spread. Visual 

presentations of the data exhibit the characteristics and the shape of the data much better 

than summary statistics. Lastly, any summaries of the data are dependent on the shape of 
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the data, and so the visual display of the data is the essential, first step in determining 

what summary (if any) to provide for a set of data. 

The initial step requires examining (i.e., seeing) the patterns and shape of a single 

variable in an effort to uncover what the variable (the data) tells us about the variable it 

supposedly represents. Thus, whether the data show the time of day that a bus arrives at a 

particular stop on its route or the age of people residing in New Hampshire when they 

first voted in a primary election, the data should tell us something, hopefully a good deal, 

about the phenomenon they represent. That may sound simplistic, but as the discussion in 

subsequent chapters shows, sorting through a single variable and extracting the patterns 

the variable displays can be a lengthy but rewarding process. The variable may be 

apparently straightforward (i.e., already smooth). However, despite the usual assumption 

that data are normally distributed with reasonable and manageable spreads and 

dispersions, that smooth data rarely exists in the real world. In fact, the discussion in 

Chapter 2 illustrates the widely diverse kinds of data that most often face the social 

scientists who seek to understand and explain social and real-world relationships. 

 

Plan for this book 

 

The next chapter (2) focuses on the nature of social science data. Types of data 

will be defined, and explained as well as illustrated. That is an essential, first-step in 

understanding data. Always consider the kind of data you have, because that will 

determine the sort of analysis that can be performed and what you can “say” in the end 

about the patterns in the data. When data are collected, care must be taken to insure its 

accuracy and its nature.  

Chapter 3 treats the kinds of analysis that should be performed on a single 

variable. This univariate (single variable) treatment is central to the first steps of EDA. 

This analysis of individual variables is important whether one has one or several 

variables that may be linked to one another. Those should be treated individually before 

they are combined in some way. The type of data involved in this analysis is important, 

and there are a variety of EDA techniques that can be applied to any type of data, with 

useful and interesting results. 
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It may be more interesting to explore the relationships between two or more 

variables, but first the nature of single variables is well worth exploring. That 

examination of a single variable will tell its own story.  Chapter 4 will examine one 

variable in order to illustrate the nature of EDA techniques on a variable. This will show 

how the EDA techniques are used at the outset of any analysis – on a single variable. This 

discussion will also treat the variable – case filings for the federal district courts in 2005 – 

in order to begin the analysis or the exploration of these data in terms of patterns and 

treatments. This will show some patterns of the variable that warrant close attention and 

substantive explanation later. The value of this treatment of one variable is to illustrate 

some of the techniques of EDA analysis and to illustrate the generic social science 

approach to data analysis. 

The next step in this exploration is to examine (see) the relationships that exist 

between variables. This will permit the extraction and analysis of Smooths and to permit 

both the analysis of Roughs and consideration of relationships between variables. 

Chapter 5 will provide a discussion of how plots and analysis of the relationships 

between two variables can be accomplished. Looking at one variable can be revealing, 

but the relationships between two variables can be quite different and interesting. If one 

is exploring such connections between data, then completing these kinds of analysis 

successfully are crucial to the determination of what kinds of relationships exist and the 

nature of those relationships. If the individual variable has been properly treated in step 

one (Chapter 4) then the analysis of two variables against one another may be 

straightforward. However, what this comparison reveals depends on what has been “done” 

to the individual variables and the patterns that have emerged from that univariate 

analysis. 

Chapter 5 focuses on multi-variate exploratory analysis techniques. That is, this 

will examine a variety of methods that can be used when there are more than two 

variables involved in the analysis. Chapter 6 will explore the district court case filings 

data in light of various variables that might be of interest as explanatory factors for the 

patterns that emerge from the Chapter 4 analysis. In other words, Chapter 6 will apply the 

techniques presented in Chapter 5 to the data of interest in this exposition. 
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It should be obvious that this book will be useful to anyone who is really 

interested in understanding a set of data – one variable or more. Crunching numbers to 

get an “answer” is an approach used by many theory-driven researchers. There is nothing 

wrong with that. However, the first step, exploring the data, does precede the evaluation 

of any theory. Without such a exploratory analysis of the data, one cannot be confident 

that the patterns they have uncovered are really there. The basic proposition for this work 

is that we start with a variable or set of variables that we know little or nothing about. We 

do not hypothesize what the relationship between these might be. However, when we 

finish the exploration of the data we will know a very great deal about them and how they 

relate to one another. 
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CHAPTER 2 

 

DATA AND VARIABLES 

 

“Exploratory data analysis is detective work – numerical detective work – or counting 

detective work – or graphical detective work” (Tukey 1977, 1). Tukey presses his 

metaphor by pointing out that, like the detective investigating the scene of the crime, the 

social scientist needs both tools and understanding in order to mine the evidence and 

identify the salient clues leading to an explanation (solution). Much of the work of a 

social scientist does not involve anything like solving a crime, but rather the work 

involves exploring and understanding (explaining) a mystery. A detective might have 

little difficulty understanding that a crime has been committed – there is a body on the 

floor. The social scientist, however, must first specify the object of the investigation, then 

determine what the facts are and move on from there. Tukey’s “social science detective” 

really must solve a mystery without the criminal analogy involved at all. Yet, the 

exploratory processes of the criminal and social science detectives are similar. 

First, for both detectives, the facts surrounding the mystery must be identified. 

What happened, and what is the evidence? That is often a very important and almost the 

end result of the social scientist’s explorations. “What happened?” is a question that deals 

with facts in a detective story and it deals with data in the case of the social scientist. 

Exploratory data analysis, therefore, is the first and essential step in the social scientist’s 

investigation of a question of interest. Data can tell us a great deal about events and 

circumstances in the past and in the present. We may wish to predict the future, but no 

detective (or perhaps social scientist) would or could make very certain predictions about 

the future. So the job of the social science detective is to explore the past and the present 

as carefully and as systematically as possible.  

That task – systematic and careful exploration of the past and present – comprises 

two essential elements.  First, there is some thing about which you want to gain a deeper 

understanding (a phenomenon of interest). Second, there is evidence (data) associated 

with that thing to be collected and analyzed. In this chapter we will discuss how political 

scientists (really, social scientists generally) conceive of concepts in order to arrive at 
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systematic understandings of their phenomena of interest. This set of elements is much 

like seeking to determine just what the mystery involves and perhaps thinking about how 

to approach solving the mystery. You will be introduced to a variety of technical terms 

that are the foundation of political science research. A working knowledge of the points 

introduced in this chapter is essential to the exploratory data analysis enterprise. 

 

From Phenomena of Interest to Variables 

 

 According to Philip Pollock, “the primary” goal of political science research is “to 

describe concepts and analyze the relationships between them.” The challenge is to 

transform those concepts into concrete instruments so that they can be systematically 

analyzed (Pollock 2009, 8). Your phenomenon of interest is a concept. It cannot be 

systematically analyzed until it has been transformed into a concrete measurable 

instrument. This process is referred to as operationalization, and it involves four basic 

steps (see Figure 2.1; Pollock 2009, 8). First, you must determine your phenomenon of 

interest. What is it that you want to know more about? Now, taking this step might strike 

you as simple, but that is not the case. There is a difference between simple and 

deceptively simple, and identifying the phenomenon of interest is most assuredly the 

latter. Not just any phenomenon of interest will do. A suitable phenomenon of interest 

must be objective, empirical, and specific. Objective phenomena concern the verifiable, 

real state of the world or nature. They do not concern values or normative judgments as 

to whether that state is good or bad. Closely related to its objectivity, a suitable 

phenomenon of interest must be empirical.  That is, it must be subject to observation. 

You must not rely merely on your faith, intuition, or common sense to determine the 

presence or magnitude of your phenomenon of interest.  Finally, the phenomenon of 

interest must be specific enough that it permits systematic study. To simply state, “I want 

to know something about X” triggers the next obvious question: “What thing about X?” 

Only when you narrow and focus your phenomenon of interest can you begin to identify 

and collect salient data leading to a meaningful investigation of your mystery. 

[Insert Figure 2.1 about here.] 
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Suppose we are interested in judicial process in the United States. That interest is 

very broad. However, such a general topic of interest is not manageable. We need to 

know more about the structure and the processes of the American judiciary before we can 

begin to examine a question that is of interest to us that relates to the U.S. judiciary. 

Perhaps we know enough about the general subject to know that there are 51 different 

judicial systems in this country, one in each state, and a federal system. Furthermore, 

perhaps we know that there are three levels of courts in the federal system – District 

Courts, Courts of Appeals, and the Supreme Court.
1
 Let us begin to narrow the subject 

down and assume that we are interested in the U.S. District Courts and how they operate. 

The kinds of research questions (mysteries) we might explore about these courts are 

numerous and could occupy a lifetime of endeavor. We only have a semester; that means 

we need to focus more narrowly on particular questions relating to the District Courts. 

The kinds of questions that could be asked about these courts (i.e., the mysteries) 

include how many judges sit on these courts, how they vote, what their backgrounds were 

(are), what kinds of decisions each of them reaches. There are certainly many questions 

about the kinds of cases these courts hear and 

decide, as well as how litigants fare (wins and 

losses) in these courts. Since there are 89 

different District Courts organized into 

geographic units, there are all kinds of 

mysteries about differences among the 

districts in terms of their size, the judges, and 

the cases litigated before each one.
 
Clearly, 

the social science detective needs to narrow 

the question (phenomenon of interest) down 

more than just the level of the court system 

that is to be examined. For illustrative 

purposes, let us focus on the workloads of the 

                                                 
1
  One should realize that the other fifty court systems are organized in widely varying fashion, so that the 

Federal Court System is not typical of the “U.S. judiciary,” which was our original, general focal point. 

 

A district covers either a state (such as 

Colorado) or a sub-state region (such as 

the Northern District of Indiana) 

Congress can reorganize the districts 

when it chooses to do that. Over time, a 

total of 89 districts have been created in 

the continental United States. This 

number does not include five additional 

district courts – in the District of 

Columbia, Guam, the North Mariana 

Islands, Puerto Rico, and the Virgin 

Islands. There used to be a federal 

District Court in the Panama Canal Zone, 

before the U.S. turned the Canal over to 

Panamanian control. In addition to the 

creation and elimination of districts, the 

Congress has complete control over how 

many district Court Judges are authorized 

to serve on each District Court 
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District Courts. More specifically, let us say our phenomenon of interest is the variation 

in each District Court’s workload for 2005.   

This is a very rough sense of how a general interest in a topic such as the 

“judiciary” can be focused and narrowed to the point where we have a mystery that can 

be detected and perhaps “solved.” It requires a good deal of substantive knowledge about 

the court system in order to identify and focus the phenomenon that is of interest. That 

preparation is very important even though little time will be spent on those preliminary 

features of the research process here. However, this also requires a working knowledge of 

what data are available on District Court workloads. 

 Once the phenomenon of interest (the concept) is identified, the analyst moves to 

the second step in the process of operationalization; the phenomenon of interest is 

“nominally defined.” Here, the empirical properties of the phenomenon of interest and 

the units to which the phenomenon applies (e.g., districts and years) are established. The 

workload of a court concerns the total number of actions, causes, suits, or controversies 

contested before a court.
2
 Since our phenomenon of interest is the annual workload of the 

various district courts, our nominal definition of that concept is the total number of 

causes, suits, actions, or controversies (civil and criminal) contested in each district in a 

given year. Notice that in this definition, we have clarified the concept’s empirical 

properties (all causes, suits, actions or controversies – regardless of substantive area), 

identified the units to which the concept applies (the 89 different District Courts), and 

specified the time period of interest (2005). 

With the nominal definition in hand, the analyst begins to construct an 

“operational definition.” That is, a strategy for the measurement of the concept is 

designed and an instrument is devised that measures the concept’s empirical properties. 

Given that we have nominally defined a district court’s annual workload as the total 

number of cases or controversies before the court for a given year, our measurement 

strategy could simply be to tally all the cases that are filed with each district in 2005.  The 

instrument, then, would be the actual number of cases filed with each court for the 

specific year under analysis. 

                                                 
2
  Black’s Law Dictionary, 6

th
 edition. 
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Finally, empirical soundings are taken, and the operational definition is applied to 

the units being analyzed. This final step transforms the abstract concept into a concrete 

variable with empirical properties that vary from unit to unit.  So, for example, in 2005, 

669 cases were filed in the U.S. District Court of Maine; 12,545 cases were filed in the 

Southern District of New York; 2297 cases were filed in Northern District of Indiana. 

 

Reliability and Validity 

 

How a concept is operationalized has a tremendous bearing on the results of 

whatever type of analysis is being performed. Simply put, if your operationalization is 

faulty, your conclusions will be faulty. As in computer programming, GIGO is at work in 

exploratory data analysis. Your operationalization should produce instruments for 

exploring the mystery you have identified that are reliable and valid. Reliable 

instruments are the result of a measurement strategy that yields the same sounding of the 

concept for a given unit every time the concept is measured for that unit. A valid 

instrument is one that actually taps the concept it is supposed to measure. Obviously, 

unreliable and invalid instruments will produce results that are unpredictable and 

erroneous.  

As a silly, but hopefully useful, example, consider a set 

of directions given to 20 different partygoers that must be 

followed in a specific order to arrive at the desired destination. 

If each set of directions was randomly ordered, the partygoers might well arrive at 20 

different locations.  Clearly, this is an unreliable set of directions. Alternatively, consider 

the same 20 partygoers given 20 identically ordered sets of directions; in each case, 

however, south is mislabeled as north. Here, all 20 partiers would arrive at the same, 

albeit wrong, location. If the set of directions is an instrument measuring the concept of 

the proper route to the party, this is an invalid measure. 

As the preceding example suggests, it might seem conceivable to have unreliable 

instruments that are valid or reliable instruments that are invalid. According to Kellstadt 

and Whitten, however, reliable but invalid instruments and vice-versa are, for the 

purposes of systematic, scientific knowledge, not possible (2009, 95-96). This is because 

of instrumentation’s crucial role in the scientific process. Recall that your phenomenon of 

“GIGO” refers to 

“Garbage In, Garbage 

Out.” 
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interest began as an abstract concept that had to be transformed into a concrete 

measurable variable in order for it to be systematically analyzed and understood. If the 

measurement of this concept is unreliable, any understanding is brought into question, 

regardless of how valid the measurement is. After all, the variable’s value for any given 

case cannot necessarily be reproduced. Our understanding of the given phenomenon of 

interest is a prisoner of our measure of that concept, and that measure can change 

haphazardly. Similarly, invalid instruments do not measure what they purport to measure. 

Consequently, any understanding born of these instruments is dubious. They can be 

utterly reliable, but in the end we acquire no meaningful understanding of our 

phenomenon of interest.  Ultimately, both reliability and validity are necessary conditions 

for acquiring a systematic understanding of the phenomenon of interest. Neither, however, 

is sufficient.
3
 

In terms of our district court example, the number of square feet in the 

Courtrooms for each district would be a reliable measure. A square foot in the Northern 

District of Illinois is identical to a square foot in a courtroom in the Eastern District of 

Washington; however, square footage would certainly NOT be a valid measure of court 

workload. The number of cases filed in each district in a year, is both reliable and valid, 

as an indicator of workload. As a count, each filed case is equivalent in all districts. This 

means that it is a reliable indicator of district court workload. It is also valid, as an 

indicator of workload, since each district must treat each case the same.
4
 

 

Units of Analysis and Levels of Measurement 

 

Two more foundational bricks concerning measurement must be put in place 

before we can begin to build a systematic understanding of the phenomenon of interest – 

                                                 
3
 There are tests that can be performed to assess a measure’s reliability and validity. The interested student 

can consult Johnson, Reynolds, and Mycoff 2008, pp. 94-104; Salkind 2006, pp. 105-118; Nachmias-

Frankfort and Nachmias 2007, pp. 148-157. 

  
4
  Each case, however, does not actually represent the same amount of work for judges. Simple cases can be 

resolved more quickly and more easily than complex cases involving a multiplicity of litigants. The parties 

settle some cases after the filing but before going to trial or before requiring any attention by a judge. So 

there is a great variation in the amount of work required for each case that is filed in district courts. For 

purposes of this study however, case filings will be used to indicate workload. 
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units of analysis and levels of measurement. A unit of analysis is “the entity (person, city, 

country . . .) we want to describe and analyze; it is the entity to which the concept applies” 

(Pollock 2009, 52). Another way of thinking about the unit of analysis is that it is the 

entity that is being measured in the operationalization process.  For example, if your 

concept is the understanding of the information presented in a given section of the course 

for a particular class of students, and you choose to operationalize that concept using 

performance on an exam, your unit of analysis would be each individual member of the 

class. Returning to our running example of District Courts’ workloads, since your 

phenomenon of interest is the workload of these courts, your unit of analysis is the 

individual district court. That is, you would measure the caseload of each of the 89 

districts. Or, to put it even more directly, you would determine the caseload of the Maine 

District and the Massachusetts District. So on through the last district. Since your unit of 

analysis is the court, and there are 89 of those, the value of the variable “caseload” would 

be recorded 89 different times – a value for each district. 

Some studies may employ a unit of analysis that varies over both space and time. 

Studies of this sort are called cross-sectional time series studies. For example, your 

phenomenon of interest might be the annual caseload for each 

federal district court for the years 1990 through 2000.  In this 

example, the unit of analysis varies over space – each of the 89 

district courts – and time – each year between 1990 and 2000In 

the court example, the unit of analysis varies over space – here, 

quite literally geographic space.
 

The student exam 

example also varies 

over “space” in the 

sense that each student 

is a different physical 

specimen. 
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Each of the 89 districts is tied to a unique geographic area, and the phenomenon 

of interest is being measured across each of those geographic areas. Analyses of this sort 

are called cross-sectional analyses. It is possible, 

however, that the phenomenon of interest contains a 

time dimension. That is, the interesting variation in 

the concept occurs over time. These studies are 

called time-series analyses. In time-series studies, the 

unit of analysis would be some discrete temporal 

period (e.g., months, years, decades), while 

remaining constant with respect to space. For 

example, the phenomenon of interest might be the 

monthly caseload of the Minnesota District Court in 2009.  In this instance, the caseload 

variable would be measured for that one district for each month in 2009.  That is, the 

value of the caseload variable would be recorded 12 different times, once for each month 

in 2009. (See Kellstadt and Whitten 2009, 23-26 for a discussion of space and time 

dimensions as they pertain to the unit of analysis.) 

A variable’s level of measurement identifies the nature of the information 

contained in the operationalization of the concept.  There are three levels of measurement 

– nominal, ordinal, and ratio – and each imparts a different amount of information. 

Nominal levels of measurement simply classify or categorize the cases. Numerically, the 

values associated with each case – the values over which the variable varies – are 

meaningful only in the sense that the values associated with different cases differ from 

one another.  The magnitudes of the different values mean nothing. Although one case 

may have a greater numerical value than another case, that does not mean there is a 

ranking or ordering of the cases regarding the phenomenon being measured. Rather, the 

values simply identify different qualities of the phenomenon. The only requirement of the 

values associated with the different qualities of the phenomenon in a nominal level of 

measure is that the values be mutually exclusive and that the different categories of the 

phenomenon being represented numerically are exhaustive. 

Some studies may employ a unit 

of analysis that varies over both 

space and time. Studies of this 

sort are called cross-sectional 

time series studies. For example, 

your phenomenon of interest 

might be the annual caseload for 

each federal district court for the 

years 1990 through 2000.  In this 

example, the unit of analysis 

varies over space – each of the 89 

district courts – and time – each 

year between 1990 and 2000. 
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An example of a nominal level 

of measure is a variable that would 

measure the identity of each district 

court. In this case each district would 

be assigned a unique value, 1 through 

89. Other than identifying the different 

districts, the values are meaningless. 

For example, the Maine District Court 

could be assigned the value “1” however, it could also be assigned the value “43” or “89.” 

That would separate it from all the other districts, but the value would not measure 

quantity or magnitude. These “numbers” only represent different parts of the county. 

Many research design texts include “interval” as 

a fourth level of measurement.  Interval levels of 

measure possess all the properties of ratio levels 

of measurement except for a true, meaningful 

zero value.  In political science there are very 

few concepts that can be operationalized at an 

interval level but not at the ratio level.  

Accordingly, we will dispense with a detailed 

discussion of this level of measurement. 

Interested students should consult Salkind 2006, 

pp. 100-105; Trochim 2001, pp. 103-105. 
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Ordinal levels of measure add 

ordering or ranking information for the 

cases with respect to the phenomenon of 

interest. That is, like the nominal level of 

measure, ordinal instruments classify and 

categorize, but they also convey information that permits the analyst to identify cases that 

are greater than or lesser than other cases with respect to the concept they measure. As 

such, ordinal levels of measurement require that the values associated with different cases 

reflect the ranking of the concept for that case. That is, cases that have “more” of the 

phenomenon being measured should be assigned a value that is greater than the value 

assigned to cases with “less” of that phenomenon.  The specific width of the intervals 

separating those values, however, is meaningless. As a consequence, although the values 

1, 2, 3, and 4 convey a numeric ranking, the analyst cannot say that cases assigned a 

value of 4 have twice as much of the property being measured as those cases assigned a 

value of 2, only that the case assigned a value of 4 has more of the property than the case 

assigned a value of 2. In the case of square 

footage, a rank ordering of all 89 districts based 

on their total courtroom square footage where 

districts with more square footage are assigned 

higher values than districts with less square 

footage would be an ordinal indicator of the 

district with the most and the least courtroom 

area. However, that rank order indicates nothing more.  That is, the district that is 

assigned the value of 20 does not have five times the square footage as the district 

assigned the value of 4. 

A better example of an ordinal level of measure might be derived by surveying 

district court practitioners regarding their impression of the amount of cases contested in 

each court in a “typical” year.  The practitioners’ possible responses would be “low,” 

“medium,” and “high,” to which you could apply the values 1, 7, and 26. 

Finally, ratio levels of measure convey the greatest amount of information about 

the concept being operationalized. The values associated with a case have the full 

Numbers are typically used with nominal 

level variables. However, letters could also 

be used or even symbols. All that is required 

is that each category present in the variable 

be represented with a different number, string 

of letters, or symbol. 

The unequal intervals between the 

values assigned to the “low,” 

“medium,” and “high” response is 

intentional and intended to 

demonstrate that ordinal measures 

require only that the numbers 

associated with the categories reflect 

the order of the categories. The 

magnitude of the difference between 

the categories is irrelevant. 
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mathematical properties of numbers. That is, they categorize, order, and permit ratio 

comparisons. A case assigned a value of 10 is in fact twice as great with respect to the 

phenomenon being measured as a case with a value of 5. This type of comparison is 

possible because this level of operationalization, at least theoretically, has a true zero 

point – the complete absence of the phenomenon being measured. 

As an example, again consider the original operationalization of our caseload 

variable. If the value of this variable is the actual number of cases on each district court’s 

docket, then this operationalization is a ratio level of measurement. Using this 

operationalization, say the Nevada district court has a caseload value of 500, while both 

the Oregon and Colorado districts have a caseload value of 1000.  In this instance the 

analyst could say the workloads of the Oregon and Colorado districts are twice the size of 

the Nevada District’s workload.  Such a comparison can be drawn because, at least 

theoretically, it is possible for a district court to have zero cases on its docket. 

Ultimately, one should strive to operationalize concepts at the highest level of 

measurement that is possible.
 
Higher levels of measure convey more information about 

the concept. If a variable is 

operationalized at a higher level of 

measure it is always possible to “collapse” 

the variable down in terms of its level of 

measurement.  After all, ratio levels of 

measure contain all the information 

contained in ordinal and nominal level 

operationalizations. It is not possible, however, to do the opposite. Nominal levels of 

measure, for example, do not contain the information necessary to order the cases or to 

make ratio comparisons. Finally, more analytic techniques are available to treat concepts 

operationalized at higher levels of measurement. This point will be emphasized and 

clarified in subsequent chapters. 

 

Data Collection  

 

Some concepts can only be operationalized at 

certain levels.  For example, the concepts of 

sex and race can only be categorized. Values 

can be applied to the different categories (0 = 

male; 1 = female; 0 = White; 1 = Black; 2 = 

Hispanic; 3 = other), but the magnitudes of 

the values are meaningless. Despite having a 

value of 1, women are not greater than men 

with respect to sex. 
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The purpose of this study is not to have students collect data, but to understand its 

analysis. However, a few words should be said about data collection. The source of one’s 

data may be an Internet site, a volume in a library, or a set of in-person interviews that are 

converted into quantitative data – that is, systematically examined so that concepts are 

extracted and measured (operationalized). One should recognize that the data must be 

managed and retained to insure two general goals. The first goal is to insure that the 

researcher can explain and understand (remember) exactly what the data mean, where 

they came from and what decisions were made with respect to operationalization and data 

processing and manipulation. That should permit the researcher to return to the data some 

time (years?) later and conduct additional research using the data or add additional data to 

the data set and complete an extended research project using the supplemented data. 

Second, any other researcher should be able to replicate the first study, using the same 

data. 

The empirical research process in the social sciences, not unlike any research 

process, requires the researcher to be systematic and deliberate throughout the steps in the 

process. The researcher must begin with a clearly articulated research question of interest 

and a set of specified variables that are expected to shed light on the question. The 

researcher must identify sources for the variables. These sources could be personal 

interviews with selected respondents. The sources may be library materials or archival 

documents. The source of data that capture the essence of variables could be already 

quantified material published in the public domain or under copyright. Some of this latter 

category might well be drawn from already existing data sets that other social scientists 

have created and made public, or these could be available on the Internet from various 

external, even invisible sources. The most careful consideration about developing sources 

of data is to determine how accurate and reliable the data are. It the data are drawn from 

someone else’s work then the prior work has to be evaluated very carefully. If the 

researcher is creating their own data then, the creation of the data must be done very 

carefully.  

For the following discussion, let’s assume one is collecting one’s own data. 

Collecting quantitative data involves a set of steps, all of which need to be documented 

carefully. A primary reason for the documentation of the collection process is that other 
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researchers may wish to use these data. In order for these researchers to have confidence 

in the data’s reliability, they need to understand how the data were collected. In addition, 

the original researcher may wish to revisit the data at a later time (perhaps years later) in 

order to reanalyze the data, add additional variables to it, or up-date the data so that 

additional cases can be included in the analysis. It is important to remember that a 

scientific process involves the ability to replicate a study or re-do the study and 

presumably obtain the same results. That requires that every step and every decision in 

the data collection process must be documented.  

Unfortunately, researchers often do not follow this level of detail, and this can 

prove fatal at later stages in the research process. So, keep very careful track of (1) the 

sources of the data, (2) how the data were processed, and (3) what each data value means 

or what it stands for. Consider the District Court workload example we have employed 

throughout this chapter. To operationalize workload, we chose to use the total number of 

cases filed with each District Court in 2005, and consequently, we need to identify the 

source of these data. Annually,
 
the Administrative Office of the United States Courts 

publishes Federal Court Management Statistics. This publication contains a variety of 

data for each district court, including the total incidence of case filings.  

Constructing the data in a form that can be analyzed involves putting the data into 

a “machine-readable” form 

usually by entering it onto some 

kind of “spreadsheet” on a 

computer. Before one does that, 

however, one should construct a 

code book that identifies each 

variable and what each value of 

each variable “means.” For the 

district court data we have 

discussed throughout this chapter, the codebook might look fairly simple since few 

variables will be in the data set. The codebook might look something like this for one of 

the variables: 

districtcourt  =  the identity of each u.s. district court  

“Annually” does not necessarily mean the same twelve-

month period for all purposes. There is the calendar year, 

beginning in January and ending at the end of December 

each year. There are Fiscal Years, that can be any twelve-

month period, and for the federal government that annual 

period starts on October 1 of each year and ends 

September 30. For many states and other organizations 

the fiscal year begins July 1 and ends June 30 of each 

calendar year. The statistical reporting year for the data 

source discussed here is October 1.  

One needs to be careful if the data collected, from 

different sources, involves annual data that do not 

correspond to the same 12 month period. 
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1. AK = Alaska District Court 

2. ALMD = Alabama Middle District 

3. ALND = Alabama Northern District 

4. ALSD = Alabama Southern District 

So forth 

In the above example, “districtcourt” is the name of the variable. Notice that a 

brief description of the variable is attached. This is referred to as the “variable label,” and 

it provides information as to what concept the variable is intended to measure. When 

possible, descriptive variable names should be used. Some concepts, however, are too 

complex to be pithily identified, and in these cases the codebook and variable label are 

especially useful. In addition to the name of the variable and variable label, the codebook 

entry should include the values of the variable as well as what those values represent. In 

this example, districtcourt would have 89 different values, and each value represents a 

specific district. The name of each district is a “value label.”   

All the variables in the data set should be present in the Code Book, and any 

coding decisions about a variable should also be reported in the Code Book. Then when 

the data are entered in the spreadsheet the researcher or anyone else can determine what 

each cell contains. 

As noted above, data are entered in the form of a spreadsheet composed of 

columns and rows. Each column identifies a variable. Each row identifies a case (unit). 

Each cell (the point at which the column and row intersect) is a particular case’s value for 

a given variable. When entering data in an actual spreadsheet program such as Excel, 

always put the labels for all the variables in the data set in columns across the first row of 

the sheet. It is also extremely useful to use the first column in the spreadsheet to identify 

each unique case. This helps to ensure that the correct values for the variables are entered 

for each unique case. 

Accordingly, in our example, the first few columns and rows of our data set 

would look something like what is displayed in Table 2.1. 

[Insert Table 2.1 about here] 

The data are displayed in a spreadsheet, and they should be collected using a spreadsheet 

that is easily accessible and understandable by other researchers. 
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If one wanted to add additional variables to this data set, one could do it in the 

columns to the right of CASE FILINGS. Thus, if one wanted to add the number of judges 

in each district and the Circuit each district was in, that would be relatively easily done. 

Simply extend the data set out two more columns, one for the number of judges and one 

for the identity of the circuit. The cases stay the same. Thus, the first case in the data set 

was and is the Massachusetts District Court. The cell that is at the intersection of the 

second row/fourth column contains the value of the number of judges sitting on the bench 

of the Massachusetts District Court. Similarly, adding more data is also relatively easy if 

the data are drawn from the same data source.
 5

 Say we wanted to add another year of 

workload to our data set. This would be accomplished by appending those data to the 

bottom of the spreadsheet. In this instance, the identity of the variables would not be 

changed. There would simply be more rows (units or cases) for which we had data.  

It is absolutely essential that a researcher maintain a codebook. That codebook 

must contain several pieces of information. First, a list and definition of each variable 

should be in the codebook. In addition, the values for each variable should be defined so 

that a subsequent data user or collector can tell what a variable’s value means. Thus, for 

example, NYED needs to be defined in the codebook. If each District court is given a 

separate “number” such as “1” or “89” those numbers also need to be identified or 

defined in the codebook. Any coding decisions that the collector makes during data 

collection need to also be recorded in the codebook. The importance of this cannot be 

stressed enough. The value of a codebook is that the researcher will have a complete 

record of the data set and its collection. That means the researcher can return to the data 

                                                 
5
  If you wish to add additional cases from a different data source, you must be very careful to insure that 

the data source provides the same data, for the new YEAR. There are other possible sources of these data, 

but they may not “count” Case Filings” the same as the Federal Court Management Statistics does. The 

District Court, the Number of Judges and the Circuit variables could be easily obtained from other sources 

and would be identical to these data in the Management Statistics source. 

It is interesting to note that the Circuit designation for some districts changed in the early 1980s. That 

was when the 11th Circuit was created, and the nine district courts in Alabama, Florida, and Georgia were 

moved from the 5th Circuit to the 11th. So if you were adding data from 1975, the Circuit designation for 

these courts could be the 5th Circuit rather than the 11th. 

Incidentally, the purpose for adding the “Judges” and the “Circuit” would be because the researcher 

wanted to examine the Case Filings categories by the Circuits in which these data arose. The Circuits, 

although designated by number, are only a categorical variable. Perhaps controlling for the number of 

judges in a District would also provide a “better” indicator of the amount of work each district was faced 

with. So “Judges” might be considered a control variable, rather than an independent variable. 
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later (months or years later) and be able to understand the data and its collection. In 

addition, another researcher could reconstruct the data collection and analysis process if 

the codebook is complete. Furthermore, additional variables could be added to the data 

set later, if the codebook is complete and exhaustive. 

At the conclusion of data entry, the researcher needs to insure that the data are 

correct. Entering quantitative values for variables in a spreadsheet is bound to involve 

some typographical errors. Not checking the data at the end of the data entry means that 

later, when those inevitable errors are uncovered, the researcher will have to return, 

virtually to the beginning in order to conduct all the analysis and research over again, 

using the corrected data. Doing some preliminary analysis to insure that you have all the 

districts (all 89) and that the Case Filings variable does not contain one or more entries 

that are completely out of line, such as a “1” or a “15008997.” Check for missing data or 

empty cells. Filling those in at this point is much easier than doing it later.
6
 A researcher 

must “look” at the data that were collected. That means visually inspect the spreadsheet 

and not obvious errors. 

 

Summary and Conclusion 

 

The social science detective employing exploratory data analysis attempts to mine 

as much information from the data as possible, free from the constraints of preconceived 

expectations and theories. That is, the detective lets the data speak for themselves. Before 

the data can speak, however, the detective must give them a voice. First, the social 

scientist must specify the phenomenon of interest.  Once the phenomenon of interest is 

specified, the social scientist operationalizes it so that its empirical properties are 

measured and it can be analyzed. In the process, salient data are collected, and the 

abstract phenomenon of interest becomes a concrete variable.  

 Hartwig and Dearing define a variable as “a set of values each of which represents 

the observed value for the same characteristic for one of the cases being used in the 

                                                 
6
  This stage in the process can be quite tedious. It is like dotting the “i’s” and crossing the “t’s.” but sloppy 

work will yield GIGO. The conclusions derived from “garbage” are probably completely wrong or at least 

subtly misleading. Not correcting obvious or non-obvious mistakes in data collection is no different than 

making up the data altogether and that reprehensible behavior is not worthy of comment. 
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research” (1979, 13). In other words, a variable comprises the range of values of an 

operationalized concept. Each individual case under investigation (i.e., each entity to 

which the concept applies) will have a measured value for that variable.  Take for 

example, the workload variable we have discussed throughout this chapter.  Here, the unit 

of analysis is the individual district court (n = 89), and the variable (caseload) has a set of 

observed values ranging from 485 (the observed value for the district court of Alaska) to 

17099 (the observed value for the Eastern District of Pennsylvania). Moreover, since 

caseload is measured at the ratio level, we can say that the Eastern District of 

Pennsylvania’s workload is more than 35 times greater than the workload of the Alaska 

district court.   

 The social scientist employing exploratory data analysis takes these and other 

facts pertaining to variation in the district courts’ caseloads and asks what is happening 

here? The point of departure to answering that question is a detailed examination of the 

single variable, caseload. Identifying the shape of the data with respect to that single 

variable, describing its distribution, and understanding its nature can reveal a great deal 

about the phenomenon it represents – the magnitude of each district court’s workload. In 

the next chapter, we discuss a number of techniques to display, summarize, and 

understand the distribution of data on a single variable.   
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Table 2.1 Sample of Data Collected and Arrayed on a Spreadsheet. 
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Figure 2.1 The Preliminary Stages of Developing a Research Project. 

 

Framework Question of 

Interest 

Phenomenon 

of Interest 

Operationalization Variable 

Empirical Project 

Statements 

What is the 

Workload of the 

U.S. Courts? 

Caseload Patterns 

in U.S. Federal 

Courts 

Number of Filings in 

Courts will indicate their 

workload 

The number of 

new cases filed 

in the Federal 

District Courts 

in 2005 

Normative or 

Prescriptive 

Statement  

The Courts are 

overworked and 

do not provide 

justice to 

litigants. 

 

* 
  

     

 

* The normative statement about “justice” and the Courts is not amenable to 

empirical or objective research. No empirical research can provide any sort of 

answer for a question like this because the “answer” depends on one’s 

preferences or definition of “justice.” Even the term: ”overworked” is a 

normative statement and cannot be measured objectively. 

 

Source. Adapted from Pollock (2005, 9). 
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CHAPTER 3 

 

Univariate Exploratory Data Analysis 

 
In its most basic sense, exploratory data analysis is concerned with the identification or 

discovery of patterns  pertaining to a variable. Recall, a variable comprises the range of 

values of an operationalized concept for the cases under analysis. When those values are 

arranged in numerical order, they form a “distribution” (Hartwig and Dearing 1979, 13). 

Exploratory data analysis, then, involves the systematic search for patterns in each 

variable’s distribution. This search for patterns is the first step towards answering the 

question “What happened here?”   

 The systematic search for patterns begins with an intimate understanding of a 

variable’s distribution. In other words, the analyst seeks to determine what the data 

underlying a variable look like. What is a variable’s most common or typical value? How 

different are each value of the cases under analysis from one another and from the typical 

value? Are there cases that have extreme values on the variable? Are the cases 

symmetrically (evenly) distributed around the variable’s most common or typical value, 

or do cases “pile up” at one end of the distribution or another?  

 These questions focus on three fundamental characteristics of a distribution – its 

measures of central tendency, its measures of 

dispersion, and its shape.  In this chapter we will 

examine those characteristics in some detail. We will 

look at the various ways in which these 

characteristics can be indicated or assessed. There are various measures of central 

tendency and dispersion that represent a variable’s characteristics. The ways these 

indicators are derived and what they mean about the variable are very important 

questions for uncovering the “mystery” in the data. We will identify the strengths and 

weaknesses that are associated with different summary statistics, and we will discuss the 

relationship between a distribution’s shape and the validity of different measures of 

central tendency and dispersion. In the process we will make the case for utilizing a 

graphical depiction of a distribution in order to develop a more complete understanding 

Hartwig and Dearing likewise 

refer to three characteristics of 

distributions. They identify them 

as the location, spread, and 

shape (1979, 13). 
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of the data underlying a variable. Each of these points, and the related techniques, are 

then illustrated on the federal district court workload data we introduced in Chapter 2. 

 

Measures of Central Tendency  

 

 Univariate summary or descriptive statistics are just what their name implies – a 

single number that represents an important feature or characteristic of one variable. The 

mode, the median, and the mean are summary statistics that report a variable’s most 

typical value, or as Hartwig and Dearing put it, “the point at which the distribution is 

anchored, or located” (1979, 13). To one degree or another, each of these summary 

statistics reports a value that is representative of all the values in a variable’s distribution. 

The mode accomplishes this by reporting the value in a distribution that occurs with the 

greatest frequency. In a statistical sense, the mode is a distribution’s most probable value; 

that is, the value that is most likely to occur.  As an example, consider placing 100 poker 

chips in a hat. Seventy-five of the chips are red; 15 of the chips are blue, and 10 chips are 

green. Given this distribution of poker chips, red is the modal category, and if one were 

to blindly draw a chip from the hat, red would be the most likely color selected. The 

value of the mode is determined by simple visual inspection. There is no computational 

formula employed to derive it. Finally, the mode is a summary statistic appropriate for all 

levels of measure; it is the only summary statistic for variables measured at the nominal 

(categorical) level. 

 The median is a positional measure.  It is the value or potential value of the case 

in a distribution above and below which exactly 50 percent of the distribution falls. In 

other words, the median is the 50
th

 percentile. It is the balancing point in a distribution. 

Thus, in a distribution with an odd number of cases, it is the value of the middle case. In a 

distribution with an even number of cases, it is the value midway between the values of 

the two middle cases. To illustrate, consider the distributions depicted Table 3.1 below. 

[Insert Table 3.1 about here.] 

Distribution 3.1A has an odd number of cases, seven to be precise. Therefore, its median 

is the value of the middle case – here, the fourth case in the distribution. There are as 

many cases positioned above it as below it. The value of this middle case is 23, and we 
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highlight it in yellow to better illustrate the median. Distribution 3.1B has an even 

number of cases, specifically six. Consequently, its median falls at the midway point 

between the values of the two middle cases – i.e., the third and fourth cases. Since the 

values of the middle cases in Distribution 3.1B are 22 and 23 (highlighted in yellow), the 

value of the median is 22.5. This value is derived by adding together the values of the 

middle cases and dividing by two. Because the median is a positional measure, it requires 

variables that can be ordered. The variable must be operationalized at the ordinal level or 

above. Finally, and perhaps of greatest significance, the median is a “resistant” summary 

statistic. That is, extreme scores in the distribution do not affect its value. As a result, the 

median is the most representative value of a distribution in the presence of extreme scores, 

or “outliers.” 

 An outlier is commonly defined as a case whose value on a variable falls well 

beyond (either above or below) the typical pattern of the other values on that variable. In 

other words, it is a case whose value results in it standing at some distance from the other 

cases in the distribution. Generally, there are three explanations for the appearance of an 

outlier. First, the extreme score producing the outlying case might be the result of a 

simple processing error.  Perhaps during data collection a value was recorded incorrectly, 

or perhaps during data input a value was entered incorrectly. For example, you may have 

intended to enter a score of 10 and instead struck the 0 key several times too often, 

entering a score of 10000 instead. A second explanation for outliers is that they are the 

result of your operationalization. Perhaps the way you chose to measure a variable results 

in a case or a handful of cases taking on extremely high or low scores. Finally, the 

outlying case or cases might genuinely reflect the data’s distribution. In other words, 

extreme scores are truly present in the data. The distribution of personal income in the 

United States, for example, does include the cases of Bill Gates and Warren Buffet. 

These are extreme, but valid outliers. 

 Using summary measures to describe a distribution in the presence of outliers will 

result in wholly wrong understandings of a distribution’s nature. Consequently, 

distributions should be carefully examined for the presence of outliers, and when they are 

found, their cause should be ferreted out. If the outlier is a simple processing error, fix it. 

If the outlier is the result of your operationalization strategy, you may attempt to devise a 
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different operational definition. Of course, an alternative operationalization may not be 

possible. If that is the case, then your choice is to acknowledge the outlier and conduct 

your analysis in full recognition of its presence. To do so, you might exclude the outlying 

case(s) or retain the case(s) and treat them differently or explain them separately from the 

bulk of the data. This might call for the use of more resistant summary measures and 

analytic techniques. These choices are true as well when the outlying case is genuinely 

present in your data. Simply put, the data cannot be “fixed,” and your operationalization 

should not be altered. Thus, your choices are either to drop the case(s) or retain the cases 

and work appropriately with them.    

 The profound effect of outliers on summary measures can be seen clearly in the 

case of the mean. The mean is the arithmetic average of a distribution. Adding together 

the values of all of the cases in a distribution and then dividing that sum by the total 

number of cases calculates the mean.  One important consequence of this computational 

procedure is that the value of every case in the distribution enters into the mean’s value. 

And in this sense, the mean can be especially representative of a distribution. Indeed, the 

mean is sometimes referred to as the “expected value of a variable.” That strength, 

however, is also the mean’s weakness. Since the value of every case affects the mean’s 

value, extreme scores have a pernicious effect on its value, either artificially inflating or 

deflating it, depending on whether they are extremely high or low scores. Thus, in the 

presence of outliers, the mean does not best describe all of the values in a distribution.  

The mean is not a resistant summary statistic, and in the presence of outliers it should not 

be used as a representative or typical value of a distribution. To illustrate this, consider 

the distributions depicted in Table 3.2. 

[Insert Table 3.2 about here.] 

In both distributions, the median (the middle score) is 70. There are three modes 

in these distributions (63, 70, and 71). The mean of Distribution 3.2A is 69.6. The mean 

of Distribution 3.2B, however, is 221.4. The extreme score recorded for the final case in 

Distribution 3.2B (9200) grossly inflates the value of its mean. With 59 of the 60 cases 

having values less than 100, a mean in excess of 200 is clearly not descriptive of the set 

of scores making up the distribution. If one were to report the mean for Distribution 3.2B 
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as a typical score, one would draw highly misleading conclusions concerning the scores 

in the distribution – here, that the losing team typically scored over 200 points.  

Clearly, the final case in Distribution 3.2B is an outlier, and given the nature of 

the concept that the values in this distribution represent (the scores of the losing team in 

the 1990 NCAA national championship basketball tournament), the outlying case is the 

result of a processing error. The solution, then, is simply to fix it. That would require 

examining the source of data again, and replacing the 9200 value with the correct losing 

score. 

 

Measures of Dispersion  

 Measures of central tendency report some typical value of a distribution. However, 

they do not report all the relevant information concerning the values of a variable. Most 

importantly, by itself, a measure of central tendency offers no indication of how 

representative its value actually is of a given 

distribution.  (Consider the representativeness of the 

mean in each distribution displayed in Table 3.2.). 

Measures of dispersion provide leverage in this 

regard. They report the extent to which cases differ 

from one another – that is, how consistent or homogenous the cases are. Consequently, 

measures of dispersion enable the analyst to assess how representative a given measure of 

central tendency is. The less dispersed a distribution, the more representative is the value 

of a measure of central tendency.  

 Consider the distributions depicted in Table 3.3. Both distributions have a mean 

value of 233 and a median of 200. Distribution 3.3A, however, is far less homogenous, 

and a typical value, whether using the mean or the median, deviates appreciably from 

several of the scores in the distribution. To give this example some substantive content, 

let’s assume the distributions are the scores of two different political science classes on 

the same cumulative exam. Both classes had the same average test score – 233, but as a 

group, the class whose scores are reported in Distribution 3.3B were more consistent in 

their test performance. To the extent the exam measured a student’s understanding of 

course material, the class whose test scores are reported in Distribution 3.3B attained a 

It is important to recognize that 

some measures of dispersion are 

usable when the values of a 

variable are ratio (or interval). For 

nominal or ordinal variable, other 

measures of dispersion need to be 

developed 
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This measure of 

dispersion is sometimes 

referred to as the 

“midspread.” 

more uniform level of understanding. Consequently, the mean (and the median) is more 

representative of that class’s performance than are these summary statistics for the class 

whose scores are recorded in Distribution 3.3A.    

[Insert Table 3.3 about here.] 

 Like measures of central tendency, there are several measures of dispersion. The 

range, the interquartile range, and the standard deviation are among the most widely 

used. The range is simply the difference (distance) 

between the highest and lowest scores in a distribution. 

Thus, the range in Distribution 3.3A is 500 – 10 = 490; 

the range for Distribution in 3.3B is 325 – 180 = 145. The 

interquartile range (IQR) is a similar concept.  It measures the difference between the 

values of the cases at the 75
th

 and 25
th

 percentiles
7
 (the upper and lower “hinges,” 

respectively). The IQR for Distribution 3.3A is 125 (290 – 165); the IQR for Distribution 

3.3B, 80 (270-190). Both measures (range and IQR) show the spread of a distribution, the 

bigger the value of the range or IQR, the bigger the distribution’s spread. Thus, 

Distribution 3.3A has a greater spread than Distribution 3.3B, both in terms of the range 

and the IQR. 

In reporting the spread, however, both types of range are rather blunt instruments. 

First, neither measure takes into account all of the scores of a distribution in its 

computation. This can be especially problematic in the case of the simple range. It 

ignores all but two values, the highest and lowest scores in a distribution. Thus, its may 

be very misleading, particularly in the presence of outliers. Outliers do not affect the IQR, 

however, since it measures the spread of the middle 50% of a distribution’s cases. Here 

again, however, the computation of the midspread uses only two values, the scores at the 

75
th

 and 25
th

 percentiles. Second, neither type of range reports the degree to which any 

specific value or score in the distribution deviates from some typical or representative 

score. That level of information is provided by the standard deviation. 

                                                 
7
 The 75

th
 and 25

th
 percentiles in a distribution are the values of the cases below which 75% and 25% of the 

cases (or observations) in that distribution fall. 
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 The standard deviation reports how far, on average, any score in the distribution 

deviates from the distribution’s mean.
8
 Thus, the greater a distribution’s standard 

deviation, the more heterogeneous or dissimilar (or spread from the mean) are the cases 

that compose it. Because the standard deviation is measured in terms of the average 

deviation from the mean, and the mean is highly vulnerable to extreme scores (outliers), 

the standard deviation is likewise vulnerable to extreme scores.
9
 In short, in the presence 

of outliers, the standard deviation will give a misleading indication of the average extent 

to which the values in a distribution are spread around some typical or representative 

value. To illustrate this, again consider the distributions of NCAA tournament scores 

presented in Table 3.2. The standard deviation of Distribution 3.2A is about 12. In other 

words, on average, the scores deviate from the distribution’s mean by about 12 points. 

This measure of average spread is substantially lower than the measure of average spread 

for Distribution 3.2B. Its standard deviation is about 1200, indicating that, on average, 

each score deviates from the distribution’s mean by almost 1200 points. Yet, the two 

distributions are identical except for the score of the final case. Relying only upon the 

standard deviation to formulate a sense of the distribution’s spread would result in a 

grossly misleading interpretation for Distribution 3.2B. The conclusion is that each score 

in the distribution stands at a substantial distance from every other score in the 

distribution. In the presence of outliers, then, the value of the standard deviation is not 

representative of a distribution’s spread. Resistant measures are more appropriate in these 

instances even if the data are interval data, which is required for the calculation of the 

standard deviation. 

                                                 
8
 More specifically, the standard deviation is the square root of the variance. Variance, in turn, measures the 

average extent to which the scores in a distribution deviate from the mean. Because the mean is the value of 

a distribution for which the sum of the deviations is 0, variance is computed by summing the squared 

deviations and then dividing by the number of observations. The standard deviation is a bit more concrete 

than the variance. By computing the square root of the variance it puts the measure of dispersion back on 

the same metric as the variable under consideration.  

 
9
 Indeed, since the values of the deviations from the mean are squared in the computation of the standard 

deviation, the effect of outliers is even more pernicious. This is because scores more distant from the mean 

not only add to the sum of the squared deviations, they do so at increasing rates. Consider the distribution 

[2, 4, 6, 8, 10]. Its mean is 6, and its standard deviation is 3.2. Increasing the final value in the distribution 

from 10 to 100 increases the mean to 24 and the standard deviation to 42.5. The mean increases 4 times; the 

standard deviation, 13.3 times (see Hartwig and Dearing 1979, 19-20 for a similar example). 
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 As is the case for the measures of central tendency, indices of spread derived from 

positional measures are more resistant. Hartwig and Dearing (1979) describe a numeric 

summary of a distribution’s spread derived by combining a distribution’s extreme scores 

(its lowest and highest values), the values of the cases at the 25
th

 and 75
th

 percentiles (i.e., 

the hinges), and its median that is one such measure. To provide a sense of distance, and 

therefore spread, between these values, a variety of ranges can be computed and reported. 

One set of ranges reports the distances between the hinges and the extreme values as well 

as the distances between the hinges and the median. A second set of ranges (referred to as 

the low-spread, midspread, and high-spread) reports the values between the median and 

the extreme values as well as the IQR itself. More specifically, the distance between the 

median and lowest value in the distribution is referred to as the low-spread; the distance 

between the median and the distribution’s greatest value is called the high-spread; the 

IQR is called the midspread.  

Figure 3.1 displays this resistant summary of spread for the NCAA Tournament 

distributions. If we focus only on the top-half of Figure 3.1 (i.e., the numeric summary 

for Distribution 3.2A), line A reports the values of the extreme scores, the hinges, and the 

median. Line B reports the first set of ranges or distances between these values. For 

example, the distance between the distribution’s lowest score and the value of the case at 

its 25
th

 percentile is 16; the distance between its median and the value of the case at the 

75
th

 percentile is 8. Finally, line C 

reports the distances of the low-spread, midspread, and high-spread. Again these are 

distances not data values. They provide some indication of spread that is relatively 

insensitive to the extremes of a distribution. 

[Insert Figure 3.1 about here.] 

By reporting the median and the IQR (or midspread), these numeric summaries 

provide some leverage regarding a distribution’s typical value and its degree of spread. 

The various ranges also allow the analyst to draw some conclusions concerning the 

distribution’s shape. A normal, bell shaped distribution is symmetrical about its 

representative value, and as Hartwig and Dearing point out, this symmetry is reflected in 

the near equality of the ranges reported for three pairs of values: (1) the low-spread and 

the high-spread, (2) the ranges between the hinges and the extreme values, and (3) the 
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ranges between the median and the hinges (1979, 23). Each of these pairs of ranges in a 

distribution should be close to identical or equal. Examination of these three pairs of 

values indicates that Distribution 3.2A is nearly normal. The low-spread and high-spread 

are 24 and 22 respectively (refer to line C). The distance between the lower hinge and the 

lowest score and the upper hinge and the greatest score are 16 and 14 respectively. 

Finally, the distance between the median and either hinge is 8 (refer to line B). This 

stands in sharp contrast to Distribution 3.2B. Its numeric summary reveals a great deal of 

inequality among the ranges and therefore asymmetry. The low-spread is 24; the high-

spread, 9130. The distance between the lower hinge and the lowest score is 16; the 

distance between the upper hinge and highest score is 9122. Thus, the outlying case in 

this distribution makes a great deal of difference even in these measures of dispersion.  

Although the numeric summary offers clues concerning the abnormal shape of 

Distribution 3.2B, it does not provide enough detail to fully understand the cause of it. As 

Hartwig and Dearing stress, the various summary statistics we have described and 

discussed are designed to summarize characteristics of the distribution. They do not 

provide adequate detail to develop a full understanding of the data (1979, 16). A visual 

representation of the distribution, a graphical image of its shape, provides this level of 

detail. Truly, a picture is worth a thousand words, or in this case, a picture is worth a 

thousand numbers! 

 

The Shape of a Distribution 

 

Distributions can have a variety of shapes. They can be bell-shaped and 

symmetrical (i.e., the classic “normal” distribution). They can be tall and skinny or low 

and squat, depending on the degree to which the individual cases in a distribution deviate 

from one another. They can have one hump (mode) or several. And they can be “skewed.” 

That is, one of the tails (or side) of the distribution is appreciably “longer” than the other. 

This occurs because the bulk of the observations in the distribution are concentrated at 

one end (side) of the distribution or the other, leaving relatively fewer cases at the 
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A distribution is symmetrical if 

there is a point in the distribution 

at which every detail on one side is 

the exact mirror image of every 

detail on the other side (Chambers 

et al. 1983, 16). 

opposite end, thereby giving the appearance of the distribution’s tail being pulled out in 

the direction of relatively few cases.
10

  

 Ideally, a distribution would be reported in a way that gives some indication of its 

shape because understanding a distribution’s shape is as important as understanding a 

distribution’s representative values. This is true for at least two reasons. First, the shape 

of a distribution affects how representative a summary statistic actually is. As we have 

seen, outliers affect the shape of a distribution, pulling it into asymmetry, and they affect 

the appropriateness of different measures of central tendency and dispersion. Even in the 

absence of outliers, however, a distribution’s shape affects the representativeness of 

summary statistics. In skewed distributions, the value of the mean is pulled in the 

direction of the skew; thus the mean’s value is more similar to the values of the relatively 

few cases at one end of the distribution or the other than it is to the bulk of the cases at 

the opposite end. The values of the median and the mode, on the other hand, are not 

similarly affected.
11

 Second, knowing the relative frequencies at which the values of a 

phenomenon of interest occur is important to develop a full understanding of that 

phenomenon. For example, if we see that the polarization of Congress over time is 

negatively skewed, we have identified an important pattern in the data, and we might 

begin to search for temporal correlates (i.e., time-related factors) that might help to 

account for this development. 

 Upon the examination of the shape of a distribution and the determination that it 

is not normal or at least symmetrical, one of “the most powerful of the tools available to 

the data analyst” is transforming or “re-expressing” the data (McNeill 1977, 12; see also 

Tukey 1977, chapter 3). The goal here is to 

mathematically alter the data in the distribution 

so that they are more symmetrical. Symmetrical 

                                                 
10

 If the bulk of the cases are concentrated at the high end of the distribution, the distribution is said to be 

negatively or left skewed. If cases are concentrated at the low end of the distribution, the distribution is 

positively or right skewed. 

 
11

 Indeed, in a negatively skewed distribution, the value of the mean is less than the value of the median. In 

a positively skewed distribution, the value of the mean is greater than the value of the median. 

 



 37

distributions have several virtues.
12

 First, they are far easier to summarize and interpret 

because there is no question as to where their center lies. In symmetrical distributions, the 

center is, simultaneously, the symmetrical center, the 50
th

 percentile, and the mean. In 

asymmetrical distributions, it is neither clear what the center is nor whether the center 

even is the most representative value of the distribution. Thus, summary statistics are 

more representative of symmetrical distributions (see McNeill1977, 12).
13

 Second, 

symmetry simplifies the description of a distribution. One need focus on only one half of 

the distribution since the other half is identical in every detail. Finally, many traditional 

statistical techniques and tests are designed to work on symmetrical data.   

There are a variety of transformations that can be applied to the data, and many 

involve changing the original data values by some exponential power. Changing the 

original values by a power greater than 1 (e.g., computing the square or cube of the 

value) will reduce the asymmetry of a negative skew. Transforming the original values by 

a power less than 1 (e.g., computing the square or cube root) will move a positively 

skewed distribution toward symmetry (Velleman and Hoaglin 1981, 48-49). Log 

transformations and reciprocals are commonly used as well. In the final analysis there is 

no set rule for which transformation to apply. Trial and error determines the analyst’s 

choice of how best to re-express the data. 

 There are a number of ways to display a distribution. The easiest, but also the 

crudest and least informative way, is to simply present the raw distribution. That is, 

arranging the values of a variable in numerical order and then displaying the ordered 

value for every observation. The distributions in Tables 3.1, 3.2, and 3.3 are clear 

examples of just this kind of raw distribution. Raw distributions certainly provide detail 

with respect to the values of the observations in the distribution, but this type of display 

does not facilitate an understanding of a distribution’s shape.  For example, from a raw 

distribution one cannot tell what the mode of the distribution is or what the median is. 

Both of these indicators must be determined by counting the values in the distribution. 

Most tellingly, in a raw distribution, there is no obvious metric to examine that reports 

                                                 
12

 The remainder of this paragraph is based on Chambers et al. 1983, 17-18. 

 
13

 More specifically, this is true for uni-modal distributions. Bi-modal and multi-modal distributions are too 

complex to be summarized in a single statistic (Hartwig and Dearing 1979, 30). 

 



 38

the relative frequency of the given values. Finally, processing whether or not an outlier is 

present takes some time. The highest and lowest scores in the distribution must be 

compared to the next highest and lowest score in the distribution. Then a determination 

must be made whether or not the distances between those scores is substantial enough to 

constitute the presence of an outlier. 

 Frequency distributions partially summarize a raw distribution, and when they are 

accompanied by percentage and cumulative percentage distributions (as they almost 

invariably are), they provide a metric to determine the relative incidence of each value in 

the distribution. Frequency distributions report each value the variable takes on for all the 

observations in the data set, the number of times each of those values occur in the data, 

the percentage of times each of those individual values occur in the data, and the running 

percentage of times a score of a given value of less occurs in the data. Table 3.4 displays 

the frequency distribution of the basketball scores that appear in Table 3.2, part A. 

[Insert Table 3.4 about here.] 

 From the frequency distribution, we see that there are a total of 60 observations in 

our data. Many of the losing scores appear in the distribution more than once. For 

example, four teams lost when scoring 70 points; two teams lost despite scoring 91 points. 

We can also quickly determine the relative incidence of a given losing score in the data. 

For example, losing teams that scored 63 points are present in the data 6.67 percent of the 

time. Finally, we can quickly determine the proportion of cases in the data that have a 

score of a given value or less. Teams that scored at least 61 points account for 25 percent 

of the losing teams in the 1990 NCAA tournament. 

 Clearly, it is possible to wring a fair amount of information concerning the data 

from a frequency distribution. However, frequency distributions do not lend themselves 

to an easy determination of a distribution’s shape. Careful examination of the cumulative 

percentages might allow the perceptive analyst to formulate some sense concerning 

whether a distribution is skewed. Recall that a skewed distribution has a concentration of 

observations at one end of the distribution or the other. If there is a notable “bulge” in the 

cumulative percentage at a given end of a frequency distribution, this would suggest 

skewness. However, this information is not quickly apparent from the frequency 

distribution. Moreover, the frequency distribution, like the raw distribution, does not 
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facilitate the identification of outliers. The frequency distribution of the scores from 

distribution 3.2B would look almost identical to the frequency distribution appearing in 

Table 3.4. Both distributions have a total of 60 observations. Both frequency distributions 

indicate that four teams lost when scoring 70 points, and two teams lost despite scoring 

91 points. And both frequency distributions would show that teams that scored at least 61 

points account for 25 percent of the losing teams. Yet, we know from our preceding 

discussion, that the shapes of the distributions are very different. One distribution is 

nearly normal; asymmetry marks the other distribution because of an outlying case (most 

likely the result of a processing error). 

 To a significant degree, a histogram overcomes a frequency distribution’s 

deficiencies regarding the communication of shape. Indeed, a histogram is a summary 

graph of a frequency distribution. To construct a histogram, the observations (values) in 

the distribution are organized into “bins” 

or categories according to their values. 

Typically, bins are created so that they 

contain between five and 20 observations. 

Once the bins are established, each 

individual observation is placed in its 

appropriate bin. The bins are arranged in 

numerical order along the x-axis. The y-

axis reports the number of observations in each bin. A bar drawn for each bin further 

summarizes this frequency. The bin with the tallest bar has the most observations.  

 Once constructed, a histogram can be examined to determine a distribution’s 

general shape as well as the presence of outliers. If the bars of the histogram are arranged 

in a near symmetrical, bell shaped pattern, the distribution is generally normal. If taller 

bars are concentrated at one end of the x-axis or the other, the distribution is skewed. And 

if a bin stands well apart from the bulk of the other bins, then this indicates an outlier. 

 Figure 3.2 depicts a pair of histograms. The histogram on the left portrays the 

1990 NCAA losing scores presented in distribution 3.2A. The histogram on the right 

portrays the distribution of family wealth in the United States. The numeric summary we 

discussed above (see Figure 3.1) indicated that the losing scores from Distribution 3.2A 

Histograms for a data set are very sensitive to 

the “binning” process. There are various 

decision rules for binning, but it is somewhat 

depending on one’s taste, and will produce 

much different “pictures” of the distribution, 

depending on the choice of bins. The usual 

practice of selecting between five and 20 bins 

does not provide much guidance for 

determining whether one should use seven or 

eight bins for a histogram. 
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are normally distributed, and the histogram of those scores confirms that impression. The 

histogram is generally bell-shaped and symmetrical. There are relatively few scores at 

either extreme, and the bulk of the scores fall in the middle.  

The histogram of family wealth on the other hand depicts a positively skewed 

distribution with several outlying cases. The bulk of the distribution is concentrated at the 

lower end, but there are a few cases with high scores that “pull out” the distribution’s tail 

at the positive end. Moreover, there are two bins that stand well apart from the bulk of the 

distribution, one between 20 and 30 and the other between 30 and 40. Clearly these are 

outliers. Furthermore, there are several bins in this distribution that are completely empty. 

[Insert Figure 3.2 about here.] 

 Although histograms communicate the shape of a distribution, they also conceal 

important information about the distribution, namely the values of the individual cases. 

Hartwig and Dearing note that a stem-and-leaf display combines the numeric information 

provided by a frequency distribution with the sense of shape communicated by the 

histogram (1979, 16; see also Tukey 1977, chapter 1). To construct a stem-and-leaf 

display, the values of the observations in a distribution are ranked and then separated and 

organized according to their digits. The first digit is the “stem,” and it is arranged 

vertically in ascending order. The subsequent digit is the “leaf.” The leaves associated 

with each stem are arranged horizontally, with leaves of greater values being farther to 

the right. The stem can be further stretched by subdividing the rows into two rows, one 

identified with a (•) that includes leaves with values ranging from zero to four and the 

other identified with a (*) that includes leaves with values ranging from five to nine 

(Hartwig and Dearing 1979, 17). Figure 3.3 displays the stem-and-leaf plot for the 

distribution of losing basketball scores. Here again, there is strong evidence that the 

distribution is close to normal. Moreover, the individual scores are retained. Ninety-two 

is the greatest score; 46, the lowest. Nearly every value between 46 and 92 is represented 

in the distribution. In other words, there is no appreciable gap in the losing scores. A 

histogram, however, conceals this attribute of the distribution because the distance 

between the individual scores that are placed in each bin is not reported. 

[Insert Figure 3.3 about here.] 
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 The stem-leaf display can be completed for any kind of distribution and the stem-

leaf of the losing scores (Table 3.2B) show the 9200 score in very striking relief and 

distance from the remainder of the distribution, far below the rest of the values. 

Conducting a stem-leaf on data at the very outset will quickly give the researcher a sense 

(a picture) of the distribution of the variable. It is a very good way to identify extreme 

values quickly so that they can be corrected of at least checked. Note that the stem-leaf in 

Figure 3.3 has ten bins. That was automatically determined by the software, rather than 

set by the researcher. But the result is a very clear picture of the distribution of the lowing 

scores. 

 Finally, a box-and-whisker plot 

(or box-plot) is, in large measure, a 

graphical representation of the numeric 

summary we discussed above. A box-and-

whisker plot consists of three horizontal 

lines composing the box. The lower line 

represents the value of the distribution at 

the 25
th

 percentile (the lower hinge). The 

upper line represents the value of the 

distribution at the 75
th

 percentile (the 

upper hinge). The middle line is the 

distribution’s median. The “whiskers” are 

lines that extend from either end of the 

box and terminate at the value of cases 

that are farthest from the hinges. Those 

are the lowest and the highest data values in the set. The ends of the whiskers are 

generally no more than 1.5 times the value of the midspread from the lower and upper 

hinges (the 25th and the 75th percentile values). However, that is a matter of preference 

on the part of the researcher, and some prefer the whisker to extend no more than one 

midspread from either hinge. Any case that has a value that results in it departing by 

more than one or 1.5 times the IQR from either hinge is marked individually with a (•).  

These values are considered to be extreme values and warrant some individual attention 

Box-plots can be displayed horizontally or vertically. 

Figure 3.4 is obviously a horizontal display. In much 

of what follows the box-plots will be displayed 

vertically. However, when a horizontal display 

conveys the information more clearly, horizontal box-

plots will be used. The choice of horizontal or vertical 

is left to the user. Although there may be times when 

one display better presents a pattern. This means 

choosing one or the other should be done carefully. 

To become very familiar with box-

plotting one should consider each box-plot 

presented in this book in terms of whether a 

horizontal or vertical display provides the 

more telling “picture” of the distribution. If 

there seems to be no difference between the 

two versions then the choice is left to the 

taste of the social scientist. 

In addition, the outliers, those data values 

beyond 1.5 times the midspread from the 

Inner quartiles can be displayed using any 

symbol. Here, those outliers will be 

displayed by solid dots. • 
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on the part of the researcher both in terms of 

explanation and statistical treatment. Figure 3.4 

displays a box-and-whisker plot (box-plot) of the 

1990 NCAA tournament losing scores from 

Distribution 3.2A. 

[Insert Figure 3.4 about here.] 

A box-plot quickly communicates a graphic 

sense of a distribution’s shape. The location of the 

median line relative to the upper and lower hinges indicates the degree to which the inner 

quartiles are normal. If the median is fairly centered between the hinges, then the 

distribution is normal. If the median is appreciably closer to the lower hinge, the 

distribution has a positive skew, and if the median is closer to the upper hinge, the 

distribution is negatively skewed. The length of the whiskers is also very important for 

getting a sense of the distribution of the variable since the whiskers represent data values 

in the two outer quartiles. Whiskers of about equal length confirm the sense of the 

normality of the distribution. If one of the whiskers is very short then that tail of the 

distribution suggests a skewed distribution even if the box is fairly symmetrical.  The 

presence of symbols for some of the data points is a quick and clear indication of whether 

outliers are present. That means it is important to have a clear sense of the “distance” 

from the hinges (lower and upper quartiles) where the whiskers end and symbols start 

appearing. The standard 1.5 IQR measure is used most often for this purpose. The box-

plot in Figure 3.4 indicates that the losing scores are very nearly normal. Moreover, there 

is no symbol appearing beyond either whisker. 

We have determined in earlier discussions of this distribution that its shape is 

normal and there are no outlying cases. One matter that has not been emphasized to this 

point is the vertical scale in Figure 3.4. In comparison with the whiskers, there is the clear 

evidence that the lengths of both whiskers are nearly identical. If the scale in examined 

and one moves 20 points from the median (70), one can tell that the losing basketball 

teams might have scored a few less points on the lower end than they did at the upper end. 

However, there is very little difference in the length of the two whiskers more than 20 

pints out (either direction) from the median. 

To assess the symmetry of a 

distribution by examining a 

box-plot of the data, both the 

shape of the box and the 

length of the whiskers need to 

be examined. That is because 

the shape of a distribution 

depends on both the shape of 

the box (and the location of 

the median in the box) and the 

length of both whiskers. 
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The box-plot is an efficient and quick way of examining a set of observations (a 

variable) and determining the shape and central location of the distribution in one 

graphical step.  These plots are quite useful and they will be used in subsequent chapters 

to analyze data and illustrate their great value in uncovering the mysteries of social 

science data. These techniques can be used on all kinds of data, although they are most 

useful for interval data, as are the more sophisticated measures of dispersion outlined 

earlier in this chapter. 

 

Conclusions 

 

This discussion has focused on both 

traditional and exploratory (descriptive) methods of 

assessing the centrality, the shape, and the spread of 

a single variable. It is very important to undertake 

this kind of analysis for each variable in a data set. If 

a variable does NOT vary (as the year of the case 

filings outlined in the previous chapter) then there is 

obviously no need to undertake any of this kind of 

analysis. (The year will become important if, later 

case filing data are collected for additional years, 

beyond 2005. That is because it then becomes a variable rather than merely an 

indentifying characteristic of all the district court case filings.) 

The value of these techniques is to permit quick and efficient assessment of the 

characteristics of each variable in a data set. Later analysis will focus on comparisons 

among variables and efforts to link variables or assess the relationships that may exist 

between or among several variables. However, before that can be done, it is important to 

answer the questions about the “mystery” of each variable, so that the researcher has a 

very well-developed understanding of the data they are working with. 

What follows in the next chapter will involve the use of these descriptive methods 

– exploratory methods – to make comparisons among a real set data. Stem-leaf plots and 

box-plots can be quite useful for comparing variables and categories of variables.  The 

The median of the distribution is 

clearly displayed in the box-plot. 

The median can also be displayed 

in a stem-leaf plot by either 

highlighting the median value or 

marking its locating with a 

vertical line. The box-plot does 

not display the location of the 

mode of a distribution because it 

is a graphical display of distances 

between values in the distribution. 

One could “see” the mode(s) of 

the losing scores in the stem-leaf 

by observing that there are four 

threes after the 6* in the stem, and 

four zeroes and one’s after the 7* 

in the stem. 
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existence of patterns in the variables, the likelihood of connections or relationships, and 

the nature of those are important for the social scientist to uncover and these techniques 

permit a great deal of the mystery of data to be uncovered. 
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Table 3.1. Two Hypothetical Distributions. 

 

Distribution 3.1A Distribution 3.1B 

10 10 

18 15 

22 22 

23 23 

24 40 

50 41 

65  
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Table 3.2. Losing Scores, 1990 NCAA Basketball Tournament. 

 

Table 3.2A    Table 3.2B   

46 67 83  46 67 83 

47 68 83  47 68 83 

48 70 84  48 70 84 

52 70 85  52 70 85 

52 70 86  52 70 86 

53 70 88  53 70 88 

54 71 89  54 71 89 

54 71 91  54 71 91 

55 71 91  55 71 91 

56 71 92  56 71 9200 

58 72   58 72  

60 72   60 72  

60 72   60 72  

61 73   61 73  

61 73   61 73  

63 75   63 75  

63 75   63 75  

63 77   63 77  

63 78   63 78  

64 78   64 78  

65 78   65 78  

65 79   65 79  

66 80   66 80  

67 81   67 81  

67 81   67 81  
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Table 3.3. Sample Test Scores from Two Classes. 

 

Class A Class B 

10 180 

165 190 

200 200 

290 270 

500 325 
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Table 3.4. Frequency Distribution of Losing Scores, 1990 NCAA Tournament. 

Losing 

Score     |      Freq.     Percent        Cum. 

----------+----------------------------------- 

46 |          1        1.67        1.67 

47 |          1        1.67        3.33 

48 |          1        1.67        5.00 

52 |          2        3.33        8.33 

53 |          1        1.67       10.00 

54 |          2        3.33       13.33 

55 |          1        1.67       15.00 

56 |          1        1.67       16.67 

58 |          1        1.67       18.33 

60 |          2        3.33       21.67 

61 |          2        3.33       25.00 

63 |          4        6.67       31.67 

64 |          1        1.67       33.33 

65 |          2        3.33       36.67 

66 |          1        1.67       38.33 

67 |          3        5.00       43.33 

68 |          1        1.67       45.00 

70 |          4        6.67       51.67 

71 |          4        6.67       58.33 

72 |          3        5.00       63.33 

73 |          2        3.33       66.67 

75 |          2        3.33       70.00 

77 |          1        1.67       71.67 

78 |          3        5.00       76.67 

79 |          1        1.67       78.33 

80 |          1        1.67       80.00 

81 |          2        3.33       83.33 

83 |          2        3.33       86.67 

84 |          1        1.67       88.33 

85 |          1        1.67       90.00 

86 |          1        1.67       91.67 

88 |          1        1.67       93.33 

89 |          1        1.67       95.00 

91 |          2        3.33       98.33 

92 |          1        1.67      100.00 

----------+----------------------------------- 

Total |                   60       100.00 
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Figure 3.1. Examples of Distribution Indicators. 

 

Distribution 3.2A 

46          62          70          78          92    [A] 

_______________________________  

                               16         8             8            14     [B] 

______________________ 

 

  24           16             22                             [C] 

 

 

Distribution 3.2B 

 

           46          62          70         78          9200 

_______________________________ 

 

                             16          8             8          9122 

______________________ 

 

                                    24           16             9130 

 

 

 



 

Figure 3.2

 

 

 

Figure 3.2 Two Examples of Histograms. 
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Figure 3.3. Stem

 

. Stem-and-Leaf Display of Losing Scores. 

 

51

 



 52

  

Figure 3.4. Box-and-Whisker Plot (Boxplot), 1990 NCAA Tournament Losing 

Scores. 
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CHAPTER 4 
 

A Univariate Application 

 
Since the general features of shape, spread, and location of a data set were all 

discussed in the abstract in Chapter 3, it is important to present some real data and to 

examine the spread, the shape, and the central locations of those data. Using the data 

source discussed in Chapter 3 (federal district court case filings) and the techniques that 

were introduced there (stem-leafs and box-plots), the focus here to examine the location, 

shape and spread of the 89 federal district courts in the United States. That workload was 

measured by examining the total number of cases filed in each district, and to examine 

one year of these data – 2005. 

  

Exploratory Data Analysis of District Court Case Filings 

The court filings ranged in size from 486 to 17099 cases during 2005. The mean 

for these was 3438, while the median was 2198. Since the mean and the median are 

nowhere nearly identical, the location of these data is not easily and accurately 

determined by one number. Furthermore, this disparity indicates that the distribution is 

asymmetrical. The median and the mean of a perfectly normal distribution are identical. 

The difference between the mean and the median (1240 cases) is quite large in 

comparison with the value of these two indicators on centrality, the amount of skew in 

the distribution might be quite great. 

Examining the stem-leaf display for these data is the next step and that indicates a 

great deal of positive skewness in the case filings data. Figure 4.1 displays the stem-leaf 

for the raw data. The shape and the spread of the case filings is clearly not normal and or 

even symmetrical. A visual assessment of the stem-leaf is essential in order to “read” the 

distribution it displays. Reading the stem-leaf requires some attention. It is necessary to 

know how the stem-leaf was constructed. The stem in Figure 4.1 (the number to the left 

of the vertical line) refers to the thousandth digit. This needs to be determined by actually 

inspecting the data and the stem carefully. The smallest number in the stem 0*** refers to 

a zero in the thousandth digit. The smallest number of case filings is 486. There is one 

district court had 486 case filings in 2005 and that was the smallest filings of any district. 
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Moving down the stem, one can determine that the first 2*** value in the stem involves 

case filings that numbered at least 2000. The leaves for this segment of the stem (after the 

first “2” and to the right of the vertical line) finish off the numbers. These should be read 

as: 2001, 2110, 2190 (the median), 2223, 2297, and 2424. The rest of the case filings in 

the 2000s (the second line is also marked 2***) are all above 2500. Their values are 2697, 

2785, and 2990. The full range of cases from a minimum of 486 to a maximum of 17099 

is quite staggering. The first item of note here is the large maximum, 17099 and the other 

notable extreme values involving case filings that were greater than 10,000 cases.  

[Insert Figure 4.1 about here.] 

The immediate question is whether these extreme high values are correct or 

mistakes of data entry. So, the next step is to check the original data source to see 

whether the values were correctly entered in the data file. To do that, the districts that are 

attached to these filings need to be identified. It turns out that these values were derived 

from the Eastern District Court of Pennsylvania (17099), the Central District of 

California (13834), the Southern District of Texas (13332), and the Southern District of 

New York (12545). When these numbers are checked in the source of the data, it turns 

out that they are correct values. So there are four very noticeable districts among the 89 

districts with very high values. These values clearly illustrate how a few values in a 

distribution can pull up the mean. These high values do not have the same affect on the 

median. That is because the median is indicates location, and location is dependent only 

on determining the middle value. That does not require any calculation of a value.  

These extreme values will require some special attention. We could drop these 

values out of the analysis because they are so much larger than the rest of the data set. 

(The next highest value is 8859, which is much lower than the 12545 value for the 

Southern District of New York.) If we drop these values from the analysis then each of 

them warrants unique and separate attention, analysis, and explanation. However, that 

would change the shape and the distribution of the data somewhat. The first step here, 

however, might be to bring them into the analysis, by means of transforming the data. 

(Transformations of these data will be discussed below.) Transformations of the data 

change the values of the data but they do not change the location of each item in the data. 

That means that the locational indicators – median, hinges, and extremes – do not move 
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or change locations. The highest value will remain the highest value in the distribution. It 

is very important to remember that about transformations. 

It is important to remember that transformations of data can accomplish one of 

two objectives. As used in this discussion, the transformation will be used to move the 

asymmetric distribution of case filings toward a more symmetrical (not necessarily 

normal) distribution or shape. Changing the shape of the data by transforming the data 

does not move the relative location of any of the data. It does change the value of the 

mean and the median, as well as the value of the extremes, the hinges and the midspreads. 

However, those changes affect the shape and the spread of the distribution. The location 

of the median and the hinges do not change when data are transformed. That is what will 

be sought in this discussion of district court case filings. (The other objective of a 

transformation is to straighten out a curve. That use of transformations will be discussed 

and demonstrated later.) 

Before we seek to transform the data, we explore the possibility of dropping the 

extremely high values in the data set. The distribution of the data, when these four are 

dropped out, is shown by the stem-leaf in Figure 4.2. The distribution is still skewed. 

While the highest four values are gone, now there are six districts that still stand out, with 

case filings in the 8000 range. These are visible in the first stem-lead (Figure 4.1). So 

dropping the highest outliers only changes the problem of high or low values. It is 

possible that dropping a set of high values in a data set will make the rest of the data 

more compact. That does not happen here, since the next six values are still separated 

from the rest of the data. Dropping values from a set does not change the shape of the 

distribution. So removing data does not achieve the objective of making a data set more 

symmetrical. So on first impression, it seems as if the best treatment of the outliers 

among the 89 districts should be some kind of transformation of the data. 

[Insert Figure 4.2 about here.] 

Examining a box-plot of the full data set shows graphically just how skewed and 

what the shape of such a box-plot looks like. One should always examine a box-plot of 

the data. It shows the location of the hinges and the median. And box-plots indicate the 

presence of any outliers in the data. The box-plot of the entire data set is displayed in 

Figure 4.3. A normal distribution produces a symmetrical and a proportional box and 
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equally long whiskers above and below the box, with no outliers. Clearly that is not the 

case with these data. 

[Insert Figure 4.3 about here.] 

Visually, it is obvious that some of the high case filings are outliers. However, it 

is also clear from the box-plot that the number of outliers is more than must the highest 

four filings that the stem-leaf displayed in Figure 4.1. The box-plot clearly shows how far 

out the outliers are and what the rest of the case filing distribution looks like. There are 

several important features of the box-plot that need to be emphasized besides its shape. 

The location of the median, inside the box shows just how “low” the median is in 

comparison with the outliers and the upper half of the distribution. The mean is also 

plotted, as a separate, independent (red) line on the box-plot and its location is 

exceptional, largely because the high outliers pull the mean up. Although the mean is 

inside the box, it is nearly 1300 cases larger than the median, and that distance is quite 

striking when displayed in the box-plot. 

In a symmetrical distribution several features of the box-plot would be different. 

The shape of the box, the location of the median, and the length of the whiskers would be 

even on both sides of the central locator (the median) in a symmetrical distribution. That 

yields several indicators of symmetry that will be used here. The formulas below would 

indicate a symmetrical distribution. The degree to which the formulas produce numbers 

other than those indicated by the formulas, the distribution is not symmetrical. The 

formula generates a ratio (called the Inner Ratio) between the two inner quartile values or 

the midspread (upper hinge – lower hinge) and the second quartile value (median – lower 

hinge).
14

 These ratios can range from zero to 1.0. The IR of a symmetrical distribution 

will be at or approach 0.5. How far a distribution is from symmetrical can be assessed by 

calculating these ratios. And a transformation that moves the ratios toward 0.5 is an 

improvement. 

(median – lower hinge) / (upper hinge – lower hinge)  = .5 (Inner Ratio or IR) 

This calculation indicates how closely the inner quartiles are to symmetry. 

                                                 
14

 This indicator is taken from McNeil (1977, 38) and the discussion about the development of ratios 

presented there. 
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As an example, the following hypothetical indicators show a symmetric 

distribution: 

Low value = 13 

2 Q (lower hinge) = 22 

Median = 37 

3 Q (upper hinge) = 51 

High value = 60 

The formula above produces the following calculation:  

(37 – 22) = 15  

(51 – 22) = 29 (midspread) 

(15/29) = 0.517 

The fact that this ratio is > 0.5 means these hypothetical data are skewed slightly left. A 

ratio that is lower than 0.5 is skewed right. This hypothetical illustrates a distribution that 

is very close to symmetrical within the middle two quartiles. The raw data on case filings 

indicate just now asymmetrical this distribution is. The Inner Ratio (IR) for the case 

filings is 0.276. This ratio is somewhat rounded but it indicates a substantial amount of 

right skewing in the raw case filings data.  

A second ratio, here called the Outer ratio or OR can be calculated measuring the 

relation between the owe half of the data distribution and the full range of the data.  The 

symmetrical dat set would have an OR of 0.5 just like the IR. There is no necessary 

correspondence between the IR and the OR. However, comparisons of these two ratios 

are helpful in assessing the skewness of the entire distribution. In the case of the Case 

Filings data, the OR is calculated below: 

(median – lowest value) / (highest value – lowest value) =  OR 

For the case filings this calculation produces an OR as follows: 

(2198 – 486) / (17099 – 486) = 1712/16613 = 0.103 

This ratio which is further from the target of 0.5 than the IR indicates that the extremes or 

the tails of the distribution have am even greater affect on the asymmetry than do the 

inner portion of the distribution (the IR which is inside the box in the box-plot). 

The outliers are marked as solid circles above the upper whisker in Figure 4.3. 

These are calculated as being more than 1.5 times the midspread (the distance inside the 
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box). The determination of which case filings are outliers in the box-plot involves: (1) 

calculating the midspread, (2) multiplying it by 1.5, (3) adding that value to the value of 

the upper hinge, and (4) determining which case filings exceed that value. The following 

reflects the calculation of these for the raw case filing data: 

Upper Hinge = 4259 

Lower Hinge = 1416 

Midspread = 2843 (* 1.5) = 4264.5 

4259 + 4264.5 = 8523.5 

A case filing value greater than 8523.5 qualifies a district court as an outlier in this data 

set. That actually yields a total of eight districts with outlier 

values. There are no separate dots on Figure 4.3 for each of 

these districts because some of these extreme filings are 

nearly identical and so their placement in the figure largely 

overlaps one another. Figure 4.1 also indicates that some 

(four) of these outliers are very near to the top of the upper whisker, and just barely 

qualify as outliers using the (1.5 * midspread) calculation. Table 4.1 lists the outlier 

districts and their values. This is largely for substantive purposes because eventually 

these outliers will need to be explained. Examining the table and the particular courts 

might provide some suggestion for why these districts had such large case filings. 

However, here the focus is on identifying their existence rather than explaining the filings 

in these districts. 

[Insert Table 4.1 about here.] 

Dropping the highest eight districts’ filings (the outliers) does little to change the 

shape of the distribution. It does change the dispersion of the data set. That really only 

tells us that the outliers have been removed. If a stem-leaf plot is done of the 81 

remaining districts, the shape of the distribution would be largely identical to the display 

in Figure 4.1. (Figure 4.2 displays the distribution without the highest four districts. It 

illustrates that dropping those highest outliers – the highest four – does nothing for the 

distribution or it shape, except to remove the very high values in the distribution. 

Dropping all eight outliers does little more for the distribution.) Dropping high (or low) 

values in a data set changes the dispersion of the data and the shape of the data set. 

To determine low 

extremes, the 1.5 multiple 

of the midspread is 

subtracted from the lower 

hinge. There are no lower 

extremes in these data. 
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However, without the four or eight high values that are outliers, the information about 

those districts is lost to the analysis, unless one analyzes those separately.  

Since the shape of the distribution is still skewed, the alternative to dropping 

values for this variable (case filings) is to try transformations in order to change the shape 

of the distribution (and thereby to generate IR and OR ratios that approach 0.5). The three 

characteristics of a set of data are the central or typical value, the dispersion of the 

variable, and the shape of the distribution. The first item to note is that ALL the values 

are included when you transform these data. The second point to remember about this 

transformation is that the objective is to make the data more symmetrical, if not normal. 

One of the functions that transforming data should do is “to reel in” or bring down (or up) 

the extreme values and make the distribution accommodate those. 

 

Transforming Data 

Transformation was suggested in Chapter 3. The purpose of transforming a single 

variable is to try to make the variable symmetric 

or at least more symmetric than the raw data are. 

This purpose is not just to make the data “look” 

nicer. Rather, the purpose of transforming the 

data is also to minimize (if not eliminate) the 

difference between the median and the mean for 

the data set. Such minimization of the difference 

will yield a more symmetrical distribution than 

the original data. Rough indicators of symmetry 

are the IR and OR ratios that were explained earlier in this chapter, so a transformation 

that moves the ratios closer to 0.5 can generally be considered an improvement over the 

raw data. There is no clear rule about how precise (close) the ratio has to be to the ideal 

0.5, so this is ratio indicator is a matter of taste as much as a statistical indicator. 

There are several different kinds of transformations. One transformation would be 

to add a constant to all the data values. This does nothing for the shape of the distribution, 

so it will not be considered here. The other kinds of transformations are logs or powers 

such as squaring all the data values or raising the data to a fractional power. In addition, 

The term that will be used throughout 

this discussion is to “transform” the 

data. Tukey (1977, Ch. 3) discusses 

“re-expression.” That may be the 

preferable term since the values in a 

data set are being re-expressed by 

some procedure. The objective, in 

both cases, whether re-expressing or 

transforming data, is to make the 

distribution more symmetrical. See 

also McNeil (1977, in passim) and 

Mosteller and Tukey (1977,  Chs. 4 

and 5, and Appendix. 
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to these multiplicative transforms, another set of re-expressions involves taking the 

reciprocal of the raw data. This is a “divisional” rather than a multiple transformation. 

There is an order to the transformations that Mosteller and Tuckey (1977, 79-81) call a 

“ladder.” The ladder, from slightest transformation to most powerful, depends on the 

shape of the raw data and how much “correction” is necessary to improve the shape and 

the distribution of the data. For our purp0oses, given the shape of the court filings, the 

following “ladder” contains the possible transformations that could improve the shape of 

the distribution:
15

 

Raw Data 

Square Roots 

Cube Roots 

Fourth Roots 

Logarithms 

Reciprocal Square Roots 

Reciprocals. 

As already noted, the choice of a transforming 

procedure involves some guess-work, and it does 

depend on how skewed the Raw Data is. Given 

the stem –leaf (Figure 4.1) and the box-plot (Figure 4.3) the skew of the court filings is 

pretty severe. So it may not be worthwhile choosing one of the “milder” transformations 

such as the square root or the cube root. 

Tukey (1977) recommends the use of either a square root or a log 

transformation.
16

 These are the most likely ones to move the data toward a symmetric 

distribution and move extreme values closer to the bulk of the data. In addition, one of 

the objectives of transforming the data is to “move” the median and the mean closer 

together. Re-expressing the case filings as their log produces the stem-leaf displayed in 

Figure 4.4. 

[Insert Figure 4.4 about here.] 

                                                 
15

 This particular ladder is taken from McNeil (1977) at 38. 

 
16

  Tukey(1977, Ch. 3) indicates that the base of the log is not particularly important since any log base only 

changes the proportion of distance between values. For convenience here, log base 10 (log(10))will be used. 

 

Raising a number of the ½ power 

involves taking the square root of the 

number. The 1/3 power is the cube 

root. 
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The first result from looking at Figure 4.4 is that the four, visibly high values are 

“still there.” However, in relation to their location in the raw data the transformation has 

brought them closer to the rest of the data. However, they are still disconnected from the 

rest of the transformed data. So even if we stop with this transformation, some individual 

attention needs to be devoted to explaining or accounting for the case filings in those four 

districts with the highest values that are listed in Table 1.1. To read this stem-leaf the 

actual number 26*|9 is the log(10) of 2.69. That means that the minimum number of case 

filings (raw number = 486) is 10
2.69

.
17

 That may have no intuitive meaning for a social 

scientist, but it provides a much different (improved) picture of the case filing data. 

The second feature of the transformed data that is apparent in Figure 4.4 involves 

the spread of the data. The shape of the transformed data has changed. Except for the four 

high values that remain the spread is much more compact and symmetrical than the raw 

number of case filings. The shape of the distribution has changed a good deal from the 

original data. That does not mean the Log of the case filings is a normal distribution. 

However, it is somewhat closer to normal. The symmetry of the log is another, important 

question, and the box-plot, displayed in Figure 4.5, illustrates that symmetry better than 

the stem-leaf. 

[Insert Figure 4.5 about here.] 

First, despite the existence of those four high districts, they are no longer outliers 

in the EDA sense! There are no low or high extremes for these transformed data. That is a 

distinct improvement over the original data, which contained eight, high outliers. (See 

Figure 4.3.) The second point to note about this box-plot is that the whiskers are nearly 

the same length. The upper whisker is a bit longer than the lower one, and that reflects 

the difference that is displayed in the stem-leaf in Figure 4.4. However, the difference in 

the whiskers is not very great. Another point of interest in the box-plot is that the median 

is located nearer to the center of the box (the Inner Quartiles) than in the box-plot of the 

raw data. That also means that the transformation of the raw data has improved this 

indicator of the typical or central point in the distribution. Lastly, the mean of the 

tranformed data, the red line on the edges of the box, is closer to the center and the 

                                                 
17

 This kind of exponent might best be understood by remembering that 10
2
 = 100, 10

3
 = 1000, and 10

4
 = 

10000. That means that the values of the log(10) for these raw data extend to nearly 10
4.3

. 
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median of the box than in the original, raw data box. The distance between the mean and 

the median has narrowed as a result of the transformation.  

As was noted above, selecting a transformation function is a matter of trial-and-

error or a matter of taste and a more powerful transformation might move the distribution 

even closer to the ideal IR and OR ratios. So, if we move down the transformation ladder 

to the bottom, we will see if the Reciprocal of the raw data improves the ratios even more 

than the log. 

A transformation of the data does not allow the comparison of the values for the 

raw data and the transformed data. However, the ratios for the raw data and the 

transformed data (for both the Log and the Reciprocal) that were explained above are 

contained in Table 4.2. Comparing these ratios provides an indication of how much the 

transformation improved the symmetry of the data. It also indicates just how much the 

transformation process is a matter of choice and taste. The Inner Ratio is improved for the 

Log transformation and the Reciprocal transformation also improves the IR. The IR for 

the reciprocal is very close to 0.5 and would seem to be the transformation of choice. 

However, the OR for the Reciprocal is hardly better than the raw data (0.199) versus 

0.103), while the Log OR is very close to 0.5.Tthat means the choice of transformation is 

up to the analyst.  It is possible that stem-leafs and the box-plots of these two 

d=transformations can be compared and some choice of transformation can be made on 

the basis of appearance. 

 [Insert Table 4.2 about here.] 

The stem-leaf and box-plot of the Reciprocal display the result of this 

transformation and the Reciprocal seems less satisfactory than the Log(10). These are 

displayed in Figures 4.6 and 4.7. The results are striking because they did not produce a 

symmetric distribution at all. There are a number of high outliers in this display of the 

Reciprocal. That confirims the OR for the Reciprocal which is so much lower than the 

Log OR. The reason the Inner Ratio is improved by the Reciprocal is that only the inner 

two quartiles and the median are used in calculating that ratio, and so the first and fourth 

quartiles and the values of that are NOT considered.   

[Insert Figure 4.6 and 4.7 about here.] 
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Figure 4.7 displays two box-plots, the one on the left is the box-plots for the 

Reciprocal transform. The one of the right is the Log transformation of the same data. 

Clearly the comparisons of these two indicate how valuable the visual inspection of the 

data can be. This comparison (called Comparative Box-Plots) also allows you to assess 

which of the transformations is the most useful for our purposes of making the data more 

symmetrical. There is no doubt which transformation does that. 

The conclusion to be drawn from this brief discussion of transformations is that 

the picture or the graphic display is at least as valuable as a calculated indicator is for 

determining symmetry of a distribution. It is essential (and easier), when engaging in 

Exploratory Data Analysis to graph the data using an appropriate method of display. 

Examining the graphs, one can obtain a “picture” of the data and what they represent. 

The result of looking at the figures (stem-leaf and box-plot) for each of the 

transformations leads to the conclusion that the Log(10) transform is much more 

satisfactory in generating a symmetrical distribution for the district court case filings, 

than is the Reciprocal. The two stem-leafs (Figures 4.4 and 4.6) are equally as useful as 

the box-plots for determining which of the transformations produces the more 

symmetrical distribution. Perhaps this simple comparison confirms that a picture is worth 

a thousand words or numbers.
18

  

 

Conclusion 

This discussion or example of exploratory data analysis of a set of real-world data 

may seem simplistic. However, it is important to realize that EDA is relatively simple and 

it is visual. It is also a very revealing approach to understanding a set of data. Looking at 

the stem-lead and the box-plot for a variable can tell you a good deal about the nature of 

the variable. It may also provide you with highlights, such as outliers that should be 

explored individually (after they are checked for accuracy). Visual inspection of a display 

may seem simplistic and not rigorous. However, there is no substitute for such an 

examination. In addition, examining such graphics should provide the analyst with a very 

good sense of what is transpiring or what the shape of the data is. 

                                                 
18

  In fact we only have 89 number of this data set, but the box-plots are obviously of very great value. 
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The Log(10) transformation performed on the data seems produced a satisfactory 

result. Certainly the result is not perfect. However, it is a substantial improvement over 

the raw data for a variety of reasons. That improvement is confirmed by the plots of the 

Log(10) and the examination of the IR and OR. Furthermore, the alternative 

transformation – the Reciprocal – proved to be much less satisfactory than the Log of the 

Case fFlings. As a result of this exercise, several portions of the analysis that follows will 

rely on the transformed data rather than the raw data. 

The routines that were used to examine the district court filings were software 

commands that produce displays of the data values or the transformed data. That is 

necessary in order to make determinations about the values of the range, whiskers, and 

IQR. Along with determining the value of the median and mean, these values are 

essential to assessing whether the raw data or some transformation of the data produces 

the kind of typical value and dispersion and shape to a variable that improves our 

understanding. We have not examined the question WHY these patterns existed in the 

data. The detective work is hardly done at this point. That will come later in this material. 

However, it is important for the social science detective to know first what the facts are – 

what happened. Then we can begin to explore WHY it happened.  

 

 

  



 

Figure 4.1  Stem-Leaf P

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts (2005).

 

 

 

Leaf Plot of Federal District Court Filings, ,2005.

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts (2005).
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lot of Federal District Court Filings, ,2005. 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts (2005). 
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Figure 4.2. Stem-Leaf display of 85 Federal District Court Case Filings, 2005. 

 

  0*** | 485 

  0*** | 540,541,570,663,669,692,705,821,824,935 

  1*** | 002,024,046,062,081,096,098,165,249,324,331,416,428,484,489 

  1*** | 515,530,570,578,623,623,643,662,667,726,743,917,922,926,960,984 

  2*** | 001,110,190,223,297,424 

  2*** | 697,785,990 

  3*** | 024,098,148,201,216,244,263,302,378 

  3*** | 573,597,633,923,973 

  4*** | 219,259,468 

  4*** | 717,719 

  5*** | 041,063,213,341 

  5*** | 519,988 

  6*** | 162 

  6*** |  

  7*** | 136,369 

  7*** |  

  8*** | 123,497 

  8*** | 607,624,698,859 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 

 



 

Figure 4.3. Box

 

 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts.

 

 

 

Box-plot of Federal District Court Filings, 2005.

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts.
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2005. 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Table 4.1. District Court Outliers and Case Filings, 2005. 

 
District Case Filings 

Pennsylvania Eastern 17099 

California Central 13834 

Texas Southern 13332 

New York Southern 12545 

Illinois Northern  8859 

Florida Southern  8698 

Texas Western  8624 

Ohio Northern  8607 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Figure 4.4. Stem-Leaf of the Log(10) of District Court 

Case Filings , 2005. 

 

  26* | 9 

  27* | 336 

  28* | 2345 

  29* | 127 

  30* | 01233447 

  31* | 022557788 

  32* | 0011222448889 

  33* | 0024568 

  34* | 34889 

  35* | 01111235669 

  36* | 033577 

  37* | 0023489 

  38* | 57 

  39* | 133445 

  40* |  

  41* | 024 

  42* | 3 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Figure 4.5. Box-plot of Log(10) District Court Case Filings, 2005. 

 

 
 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Table 4.2. Comparison of Dispersion Ratios for 

Various Transformations. 

 
 Raw Data Log of data Reciprocal of Data 

Inner Ratio (IR) 0.272 0.399 0.471 

Outer Ratio (OR) 0.103 0.423 0.199 
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Figure 4.6. Stem-Leaf of Reciprocal of District Court 

Case Filings, 2005. 

 

  0* | 6788 

   1* | 1122224467899 

   2* | 001123455888 

   3* | 001111223367 

   4* | 14567 

   5* | 00122278 

   6* | 00122345677 

   7* | 0156 

   8* | 06 

   9* | 113468 

  10* | 07 

  11* |  

  12* | 12 

  13* |  

  14* | 259 

  15* | 1 

  16* |  

  17* | 5 

  18* | 55 

  19* |  

  20* | 6 

 

The stem of this plot represents a multiple of 0.00006 or0.00206. 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Figure 4.7. Comparative Box-plots of Reciprocal and the Log(10) Transformations of 

the District Court Case Filings, 2005. 

 

 

    
 

  Reciprocal      Log(10) 

 

 

Source: Federal Court Management Statistics, Admin. Office of the U.S. Courts. 
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Appendix for Chapter 4. 

 

The analysis completed in this Chapter was done using STATA software. The commands 

were performed on one variable called totalfilings. 

 

The STATA commands follow. 

 

Figure 4.1  

 

stem totalfilings 

 

Figure 4.2 [This figure was produced by the same command as Figure 4.1 – stem – 

except that the four high values were dropped by copying the variable 

totalfilings and then replacing those values with the missing value 

indicator.] 

 

Figure 4.3 

 

gr box totalfilings, yline(3438.7) 
 

[This command generated the box-plot and the line (yline) that displays the mean 

for the case filing data as a separate horizontal line. The mean and other statistics 

for the raw data were produced by the “summary” command. 

 

su totalfilings, d 

 

[The output of this command is a set of numbers that indicate the mean, the 

median, the inner quartile values, the extreme values and from this set of numbers 

the range, and other values in the raw data can be calculated. The “d” in the 

summary command is essential to produce the necessary values for the variable. It 

stands for a “detailed” summary.] 

 

To create the log of the variable the following generate command was entered. The gen 

command creates a new variable, here called LogTF. 

 

gen LogTF = (log10(totalfilings)) 
 

Figure 4.4 

 

stem LogTF 

 

Figure 4.5 

 

gr box LogTF, yline(3.384) 
 



 75

[As with Figure 4.3, this command generated the box-plot and the line (yline) 

that displays the mean for the transformed case filing data. The mean and other 

statistics for the transformed data were produced by the “summary” command. 

 

su LogTF, d 

 

N.B. the information displayed in Table 4.1 was also generated using the following 

STATA command. 

 

list disctrictcourt totalfilings if totalfilings > 8400 

 

[The 8400 number was determined by a visual inspection of the stem-leaf of 

totalfilings. That indicated that the values above 8400 were of interest. 

This command produced a list of the district courts (disctrictcourt is the 

name of each district court in the data set) and the case filings for those districts if 

the value of the case filings exceeded 8400.] 

 

The discussion of transformations indicates that the process is trial and error. There is a 

STATA command that provides a useful, quick visual assessment of the transformation 

ladder for a variable. The only trouble with this routine is that the objective and the 

results focus on making the distribution normal rather trying to make the variable more 

symmetrical. There is no indication of the symmetry of the transformations, although the 

visual inspection of the histograms provides a chance to assess symmetry. The routine 

and the result for the case filings data are presented here. 

 

gladder totalfilings  

 

The result of the gladder command follows. It is clear from this display of histograms 

that the log transformation is the most successful in converting the variable into a normal 

distribution. It is also evident that the symmetry of the log transformation is the best 

approximation to a symmetrical distribution compared with the other transformations 

presented by this routine. 
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From this set of histograms one can see several points. First, the “identity” distribution in 

the upper right-hand corner is the distribution of the actual data. That is hardly 

symmetrical or normal. The other transformation that was attempted in the discussion in 

the chapter is labeled the “inverse” here. That transformation hardly produces a 

satisfactory result here either. 

 

It is not recommended that one rely on this routine to determine which transformation, if 

any, is the best. The STATA Manual indicates that this routine is “useful pedagogically,” 

but it should not be relied on for research or analysis. This is a quick method of assessing 

the impact of various transformations on a variable. However, the objective of the routine 

is to normalize the variable, NOT make it more symmetrical. We strongly recommend 

trying the transformations. The analyst should look at each transformation, and assess the 

change in the IR and the OR (the ratios). That provides a much better understanding of 

the variable than does the gladder routine. In the discussion above regarding 

transformations, it was suggested that “trying” various transformations moving up or 

down the transformation ladder would provide a very good sense of the variable and 

developing symmetry. 
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